期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Sentinel-1/2改进极化指数和纹理特征的土壤含盐量反演模型
被引量:
1
1
作者
张智韬
贺玉洁
+3 位作者
殷皓原
项茹
陈俊英
杜瑞麒
《农业机械学报》
EI
CAS
CSCD
北大核心
2024年第1期175-185,共11页
目前Sentinel-1/2协同反演植被土壤含盐量的研究大多是基于Sentinel-2光谱信息和Sentinel-1后向散射系数,没有考虑Sentinel-2光谱信息容易受土壤亮度等信息影响,Sentinel-1后向散射系数容易受土壤粗糙度和水分影响。为进一步提高Sentine...
目前Sentinel-1/2协同反演植被土壤含盐量的研究大多是基于Sentinel-2光谱信息和Sentinel-1后向散射系数,没有考虑Sentinel-2光谱信息容易受土壤亮度等信息影响,Sentinel-1后向散射系数容易受土壤粗糙度和水分影响。为进一步提高Sentinel-1/2协同反演植被土壤含盐量的精度,用水云模型对雷达卫星后向散射系数进行校正,消除植被影响;然后协同Sentinel-2纹理特征,基于VIP、OOB、PCA 3种变量筛选和RF、ELM、Cubist 3种机器学习回归模型构建植被土壤含盐量反演模型。研究结果表明:经过水云模型去除植被影响后的雷达后向散射系数及其极化组合指数与土壤含盐量的相关性有一定程度的提高。不同变量选择方法与不同机器学习方法耦合模型在反演土壤含盐量中,OOB变量筛选方法与RF、ELM和Cubist 3种机器学习方法的耦合模型精度最佳,建模集和验证集的R2都在0.750以上,且验证集的RMSE和MAE均最小;其中OOB-Cubist耦合模型精度最高,且R_(v)^(2)/R_(c)^(2)为0.955,具有良好的鲁棒性。研究可为机器学习协同物理模型、光学卫星协同雷达卫星在土壤含盐量反演中的进一步应用提供思路。
展开更多
关键词
土壤含盐量
Sentinel-1/2
纹理特征
水云模型
机器学习
改进极化指数
下载PDF
职称材料
题名
基于Sentinel-1/2改进极化指数和纹理特征的土壤含盐量反演模型
被引量:
1
1
作者
张智韬
贺玉洁
殷皓原
项茹
陈俊英
杜瑞麒
机构
西北农林科技大学水利与建筑工程学院
西北农林科技大学旱区农业水土工程教育部重点实验室
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2024年第1期175-185,共11页
基金
国家自然科学基金项目(51979232、52279047、52179044)
国家重点研发计划项目(2022YFD1900404)。
文摘
目前Sentinel-1/2协同反演植被土壤含盐量的研究大多是基于Sentinel-2光谱信息和Sentinel-1后向散射系数,没有考虑Sentinel-2光谱信息容易受土壤亮度等信息影响,Sentinel-1后向散射系数容易受土壤粗糙度和水分影响。为进一步提高Sentinel-1/2协同反演植被土壤含盐量的精度,用水云模型对雷达卫星后向散射系数进行校正,消除植被影响;然后协同Sentinel-2纹理特征,基于VIP、OOB、PCA 3种变量筛选和RF、ELM、Cubist 3种机器学习回归模型构建植被土壤含盐量反演模型。研究结果表明:经过水云模型去除植被影响后的雷达后向散射系数及其极化组合指数与土壤含盐量的相关性有一定程度的提高。不同变量选择方法与不同机器学习方法耦合模型在反演土壤含盐量中,OOB变量筛选方法与RF、ELM和Cubist 3种机器学习方法的耦合模型精度最佳,建模集和验证集的R2都在0.750以上,且验证集的RMSE和MAE均最小;其中OOB-Cubist耦合模型精度最高,且R_(v)^(2)/R_(c)^(2)为0.955,具有良好的鲁棒性。研究可为机器学习协同物理模型、光学卫星协同雷达卫星在土壤含盐量反演中的进一步应用提供思路。
关键词
土壤含盐量
Sentinel-1/2
纹理特征
水云模型
机器学习
改进极化指数
Keywords
soil salinity
Sentinel-1/2
texture features
water cloud model
machine learning
improving polarization index
分类号
S156.41 [农业科学—土壤学]
S127 [农业科学—农业基础科学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Sentinel-1/2改进极化指数和纹理特征的土壤含盐量反演模型
张智韬
贺玉洁
殷皓原
项茹
陈俊英
杜瑞麒
《农业机械学报》
EI
CAS
CSCD
北大核心
2024
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部