针对现有的特高压直流(ultra high voltage direct current,UHVDC)输电系统故障检测方法灵敏度低、难以识别高阻接地故障的问题,提出了一种基于整数因子(integer factor,IF)-近似导数(approximate derivative,AD)和极限学习机(extreme l...针对现有的特高压直流(ultra high voltage direct current,UHVDC)输电系统故障检测方法灵敏度低、难以识别高阻接地故障的问题,提出了一种基于整数因子(integer factor,IF)-近似导数(approximate derivative,AD)和极限学习机(extreme learning machine,ELM)的特高压直流输电系统故障辨识方法。其中整数因子用于分析不同采样频率下的信号,近似导数法用于获得信号不同程度的细节系数。首先,基于不同的整数因子对信号进行下采样,并利用近似导数法对所得信号求一阶、二阶和三阶近似导数。其次,分别计算各个子信号的熵特征。然后,用基于交叉验证的递归特征消除(recursive feature elimination with cross validation,RFECV)算法对得到的一系列特征进行特征筛选,并结合ELM对特高压直流输电系统进行故障辨识。最后,在Matlab/Simulink环境中搭建了±800 kV的UHVDC系统模型,模拟不同故障类型。实验结果表明,所提方法在识别特高压直流输电系统不同类型故障时有更高的准确率,且耐受过渡电阻能力强。展开更多
文摘针对现有的特高压直流(ultra high voltage direct current,UHVDC)输电系统故障检测方法灵敏度低、难以识别高阻接地故障的问题,提出了一种基于整数因子(integer factor,IF)-近似导数(approximate derivative,AD)和极限学习机(extreme learning machine,ELM)的特高压直流输电系统故障辨识方法。其中整数因子用于分析不同采样频率下的信号,近似导数法用于获得信号不同程度的细节系数。首先,基于不同的整数因子对信号进行下采样,并利用近似导数法对所得信号求一阶、二阶和三阶近似导数。其次,分别计算各个子信号的熵特征。然后,用基于交叉验证的递归特征消除(recursive feature elimination with cross validation,RFECV)算法对得到的一系列特征进行特征筛选,并结合ELM对特高压直流输电系统进行故障辨识。最后,在Matlab/Simulink环境中搭建了±800 kV的UHVDC系统模型,模拟不同故障类型。实验结果表明,所提方法在识别特高压直流输电系统不同类型故障时有更高的准确率,且耐受过渡电阻能力强。