针对杂波环境下的多目标跟踪数据互联问题,该文提出基于全邻模糊聚类的联合概率数据互联算法(Joint Probabilistic Data Association algorithm based on All-Neighbor Fuzzy Clustering,ANFCJPDA)。该算法根据确认区域中量测的分布和点...针对杂波环境下的多目标跟踪数据互联问题,该文提出基于全邻模糊聚类的联合概率数据互联算法(Joint Probabilistic Data Association algorithm based on All-Neighbor Fuzzy Clustering,ANFCJPDA)。该算法根据确认区域中量测的分布和点迹-航迹关联规则构造统计距离,以各目标的预测位置为聚类中心,利用模糊聚类方法,计算相关波门内候选量测与不同目标互联的概率,通过概率加权融合对各目标状态与协方差进行更新。仿真分析表明,与经典的联合概率数据互联算法(Joint Probabilistic Data Association algorithm,JPDA)相比,ANFCJPDA较大程度地改善了算法的实时性,并且跟踪精度与JPDA相当。展开更多
针对杂波环境下多传感器跟踪多目标的问题,提出了一种基于速度方位约束的多传感器模糊数据互联算法(multi-sensor fuzzy data association method based on velocity and azimuth,VA-MSFDA)。该算法首先利用方位速度信息对确认区域内的...针对杂波环境下多传感器跟踪多目标的问题,提出了一种基于速度方位约束的多传感器模糊数据互联算法(multi-sensor fuzzy data association method based on velocity and azimuth,VA-MSFDA)。该算法首先利用方位速度信息对确认区域内的有效量测作进一步筛选,剔除部分虚假量测,然后基于模糊聚类方法计算候选量测与观测区域内各目标互联的概率,应用顺序结构多传感器联合概率数据互联(multi-sensor joint probabilistic data association algorithm,MSJPDA)原理,依次处理各传感器中的目标测量数据,实现对多目标的跟踪。仿真结果表明,与顺序MSJPDA相比,VA-MSFDA在算法耗时、估计精度、收敛速度和量测正确关联率等方面优势明显,能够更好地解决杂波环境下的多目标跟踪问题。展开更多
文摘针对杂波环境下的多目标跟踪数据互联问题,该文提出基于全邻模糊聚类的联合概率数据互联算法(Joint Probabilistic Data Association algorithm based on All-Neighbor Fuzzy Clustering,ANFCJPDA)。该算法根据确认区域中量测的分布和点迹-航迹关联规则构造统计距离,以各目标的预测位置为聚类中心,利用模糊聚类方法,计算相关波门内候选量测与不同目标互联的概率,通过概率加权融合对各目标状态与协方差进行更新。仿真分析表明,与经典的联合概率数据互联算法(Joint Probabilistic Data Association algorithm,JPDA)相比,ANFCJPDA较大程度地改善了算法的实时性,并且跟踪精度与JPDA相当。
文摘针对杂波环境下多传感器跟踪多目标的问题,提出了一种基于速度方位约束的多传感器模糊数据互联算法(multi-sensor fuzzy data association method based on velocity and azimuth,VA-MSFDA)。该算法首先利用方位速度信息对确认区域内的有效量测作进一步筛选,剔除部分虚假量测,然后基于模糊聚类方法计算候选量测与观测区域内各目标互联的概率,应用顺序结构多传感器联合概率数据互联(multi-sensor joint probabilistic data association algorithm,MSJPDA)原理,依次处理各传感器中的目标测量数据,实现对多目标的跟踪。仿真结果表明,与顺序MSJPDA相比,VA-MSFDA在算法耗时、估计精度、收敛速度和量测正确关联率等方面优势明显,能够更好地解决杂波环境下的多目标跟踪问题。