为解决混合云环境下科学工作流数据布局问题,在考虑数据的安全需求的前提下,以优化跨数据中心传输时延为目标,提出了一种混合云环境下面向安全的科学工作流布局策略。分析数据集的安全需求以及数据中心所能提供的安全服务,提出安全等级...为解决混合云环境下科学工作流数据布局问题,在考虑数据的安全需求的前提下,以优化跨数据中心传输时延为目标,提出了一种混合云环境下面向安全的科学工作流布局策略。分析数据集的安全需求以及数据中心所能提供的安全服务,提出安全等级分级规则;设计并提出基于遗传算法和模拟退火算法的自适应粒子群优化算法(adaptive particle swarm optimization algorithm based on SA and GA,SAGA-PSO),避免算法陷入局部极值,有效提高种群多样性;与其它经典布局算法对比,基于SAGA-PSO的数据布局策略在满足数据安全需求的同时能够大大降低传输时延。展开更多
如何有效地对数据进行布局是大规模网络存储系统面临的重大挑战,需要一种能够自适应存储规模变化、公平有效的数据布局算法.提出的CCHDP(clustering-based and consistent hashing-aware data placement)算法将聚类算法与一致hash方法...如何有效地对数据进行布局是大规模网络存储系统面临的重大挑战,需要一种能够自适应存储规模变化、公平有效的数据布局算法.提出的CCHDP(clustering-based and consistent hashing-aware data placement)算法将聚类算法与一致hash方法相结合,引入少量的虚拟设备,极大地减少了存储空间.理论和实验证明,CCHDP算法可以按照设备的权重公平地分布数据,自适应存储设备的增加和删除,在存储规模发生变化时迁移最少的数据量,并且可以快速地定位数据,对存储空间的消耗较少.展开更多
文摘为解决混合云环境下科学工作流数据布局问题,在考虑数据的安全需求的前提下,以优化跨数据中心传输时延为目标,提出了一种混合云环境下面向安全的科学工作流布局策略。分析数据集的安全需求以及数据中心所能提供的安全服务,提出安全等级分级规则;设计并提出基于遗传算法和模拟退火算法的自适应粒子群优化算法(adaptive particle swarm optimization algorithm based on SA and GA,SAGA-PSO),避免算法陷入局部极值,有效提高种群多样性;与其它经典布局算法对比,基于SAGA-PSO的数据布局策略在满足数据安全需求的同时能够大大降低传输时延。
文摘如何有效地对数据进行布局是大规模网络存储系统面临的重大挑战,需要一种能够自适应存储规模变化、公平有效的数据布局算法.提出的CCHDP(clustering-based and consistent hashing-aware data placement)算法将聚类算法与一致hash方法相结合,引入少量的虚拟设备,极大地减少了存储空间.理论和实验证明,CCHDP算法可以按照设备的权重公平地分布数据,自适应存储设备的增加和删除,在存储规模发生变化时迁移最少的数据量,并且可以快速地定位数据,对存储空间的消耗较少.