期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
生成对抗网络文字生成图像算法综述 被引量:3
1
作者 邓博 贺春林 +1 位作者 徐黎明 宋兰玉 《计算机工程与应用》 CSCD 北大核心 2022年第23期42-55,共14页
生成对抗网络是图像合成的重要方法,也是目前实现文字生成图像任务最多的手段。随着跨模态生成研究不断地深入,文字生成图像的真实度与语义相关性得到了巨大提升,无论是生成花卉、鸟类、人脸等自然图像,还是生成场景图和布局,都取得了... 生成对抗网络是图像合成的重要方法,也是目前实现文字生成图像任务最多的手段。随着跨模态生成研究不断地深入,文字生成图像的真实度与语义相关性得到了巨大提升,无论是生成花卉、鸟类、人脸等自然图像,还是生成场景图和布局,都取得了较好的成果。同时,文字生成图像技术也存在面临着一些挑战,如难以生成复杂场景中的多个物体,以及现有的评估指标不能准确地评估新提出的文字生成图像算法,需要提出新的算法评价指标。回顾了文字生成图像方法自提出以来的发展状况,列举了近年提出的文字生成图像算法、常用数据集和评估指标。最后从数据集、指标、算法和应用方面探讨了目前存在的问题,并展望了今后的研究方向。 展开更多
关键词 图像合成 生成对抗网络 文字生成图像
下载PDF
基于生成对抗网络的文本两阶段生成高质量图像方法 被引量:1
2
作者 曹寅 秦俊平 +2 位作者 高彤 马千里 任家琪 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第4期674-683,共10页
为了解决传统文本生成图像方法生成图像质量差和文本描述与生成图像不一致问题,以多种损失函数为约束,提出深度融合注意力的生成对抗网络方法(DFA-GAN).采用两阶段图像生成,以单级生成对抗网络(GAN)为主干,将第一阶段生成的初始模糊图... 为了解决传统文本生成图像方法生成图像质量差和文本描述与生成图像不一致问题,以多种损失函数为约束,提出深度融合注意力的生成对抗网络方法(DFA-GAN).采用两阶段图像生成,以单级生成对抗网络(GAN)为主干,将第一阶段生成的初始模糊图像输入第二阶段,对初始图像进行高质量再生成,以提升图像的生成质量.在图像生成的第一阶段,设计视觉文本融合模块,深度融合文本特征与图像特征,将文本信息充分融合在不同尺度的图像采样过程中.在图像生成的第二阶段,为了充分融合图像特征与文本描述词特征,提出以改进后的Vision Transformer为编码器的图像生成器.定量与定性实验结果表明,对比其他主流模型,所提方法提高了生成图像的质量,与文本描述更加符合. 展开更多
关键词 文字生成图像 深度融合 生成对抗网络(GAN) 多尺度特征融合 语义一致性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部