在互联网时代,越来越多的财务公司选择在财经新闻平台上发表自己的见解,这些评论文本作为舆情的载体,可以充分反映财务公司的情绪,影响公众的投资决策和市场走势.情感分析为分析海量的经济类文本情感类型提供了有效的研究手段.但是,由...在互联网时代,越来越多的财务公司选择在财经新闻平台上发表自己的见解,这些评论文本作为舆情的载体,可以充分反映财务公司的情绪,影响公众的投资决策和市场走势.情感分析为分析海量的经济类文本情感类型提供了有效的研究手段.但是,由于特定领域文本的专业性和大标签数据集的不适用性,经济类文本情感分析给传统的情感分析模型带来了巨大的挑战.当将一般情感分析模型应用于经济等特定领域时,模型在准确率与召回率上表现较差.为了克服这些挑战,文章针对财经新闻平台上的经济类文本的情感分析任务,从词表示模型出发,提出了基于知识蒸馏方法的双路BERT(Two-way BERT based on knowledge distillation method)情感分析模型,与文本卷积神经网络(Text-CNN)、卷积递归神经网络(CRNN)、双向长时和短时记忆网络(Bi-LSTM)等算法进行对比实验,结果得出该改进方法相较于其他算法在准确率、召回率和F1值均提升了1%~3%,具有较好的泛化性能.展开更多
近年来,情感分析是近年来自然语言处理领域备受学者关注的核心研究方向,传统文本情感分析模型只能捕捉文本的表面特征,在不同领域或语境下缺乏泛化能力,难以处理长文本以及语义歧义等问题.针对上述问题,本文设计了基于图神经网络与表示...近年来,情感分析是近年来自然语言处理领域备受学者关注的核心研究方向,传统文本情感分析模型只能捕捉文本的表面特征,在不同领域或语境下缺乏泛化能力,难以处理长文本以及语义歧义等问题.针对上述问题,本文设计了基于图神经网络与表示学习的文本情感分析模型(a text sentiment analysis model based on graph neural networks and representation learning,GNNRL).利用Spacy生成句子的语法依赖树,利用图卷积神经网络进行编码,以捕捉句子中词语之间更复杂的关系;采用动态k-max池化进一步筛选特征,保留文本相对位置的序列特征,避免部分特征损失的问题,从而提高模型的特征提取能力.最后将情感特征向量输送到分类器SoftMax中,根据归一化后的值来判断情感分类.为验证本文所提GNNRL模型的有效性,采用OS10和SMP2020两个文本情感分析数据集进行测试,与HyperGAT、IBHC、BERT_CNN、BERT_GCN、TextGCN模型比较,结果表明,综合accuracy、precision、recall、f14个指标,本文改进的AM_DNN模型均优于其他模型,在文本情感中具有较好的分类性能,并探究了不同优化器的选择对本模型的影响.展开更多
目前情感分析任务经常只聚焦于评论文本本身,忽略了评论者与被评论者的个体偏差特征,会显著影响对文本的整体情感判断。针对上述问题,提出一种融合评论双边个体偏差信息的文本情感分析模型UP-ATL(User and Product-Attention TranLSTM)...目前情感分析任务经常只聚焦于评论文本本身,忽略了评论者与被评论者的个体偏差特征,会显著影响对文本的整体情感判断。针对上述问题,提出一种融合评论双边个体偏差信息的文本情感分析模型UP-ATL(User and Product-Attention TranLSTM)。该模型使用自注意力机制、交叉注意力机制对评论文本与个体偏差信息分别进行双向融合,在融合过程中采用定制化权重的计算方式,以缓解实际应用场景中冷启动带来的数据稀疏问题,最终得到特征充分融合的评论文本和评论双边的表示信息。选取餐饮领域、电影领域的三个真实公开数据集Yelp2013、Yelp2014、IMDB进行效果验证,与UPNN(User Product Neural Network)、NSC(Neural Sentiment Classification)、CMA(Cascading Multiway Attention)、HUAPA(Hierarchical User And Product multi-head Attention)等基准模型进行比较。实验结果表明,相较于比较模型中最好的HUAPA模型,UP-ATL的准确度在三个数据集上依次分别提高了6.9、5.9和1.6个百分点。展开更多
文摘在互联网时代,越来越多的财务公司选择在财经新闻平台上发表自己的见解,这些评论文本作为舆情的载体,可以充分反映财务公司的情绪,影响公众的投资决策和市场走势.情感分析为分析海量的经济类文本情感类型提供了有效的研究手段.但是,由于特定领域文本的专业性和大标签数据集的不适用性,经济类文本情感分析给传统的情感分析模型带来了巨大的挑战.当将一般情感分析模型应用于经济等特定领域时,模型在准确率与召回率上表现较差.为了克服这些挑战,文章针对财经新闻平台上的经济类文本的情感分析任务,从词表示模型出发,提出了基于知识蒸馏方法的双路BERT(Two-way BERT based on knowledge distillation method)情感分析模型,与文本卷积神经网络(Text-CNN)、卷积递归神经网络(CRNN)、双向长时和短时记忆网络(Bi-LSTM)等算法进行对比实验,结果得出该改进方法相较于其他算法在准确率、召回率和F1值均提升了1%~3%,具有较好的泛化性能.
文摘近年来,情感分析是近年来自然语言处理领域备受学者关注的核心研究方向,传统文本情感分析模型只能捕捉文本的表面特征,在不同领域或语境下缺乏泛化能力,难以处理长文本以及语义歧义等问题.针对上述问题,本文设计了基于图神经网络与表示学习的文本情感分析模型(a text sentiment analysis model based on graph neural networks and representation learning,GNNRL).利用Spacy生成句子的语法依赖树,利用图卷积神经网络进行编码,以捕捉句子中词语之间更复杂的关系;采用动态k-max池化进一步筛选特征,保留文本相对位置的序列特征,避免部分特征损失的问题,从而提高模型的特征提取能力.最后将情感特征向量输送到分类器SoftMax中,根据归一化后的值来判断情感分类.为验证本文所提GNNRL模型的有效性,采用OS10和SMP2020两个文本情感分析数据集进行测试,与HyperGAT、IBHC、BERT_CNN、BERT_GCN、TextGCN模型比较,结果表明,综合accuracy、precision、recall、f14个指标,本文改进的AM_DNN模型均优于其他模型,在文本情感中具有较好的分类性能,并探究了不同优化器的选择对本模型的影响.