Thermal treatment technologies hold an important niche in the remediation of hydrocarbon- contaminated soils and sediments due to their ability to quickly and reliably meet cleanup standards. However, sustained high t...Thermal treatment technologies hold an important niche in the remediation of hydrocarbon- contaminated soils and sediments due to their ability to quickly and reliably meet cleanup standards. However, sustained high temperature can be energy intensive and can damage soil properties. Despite the broad applicability and prevalence of thermal remediation, little work has been done to improve the environmental compatibility and sustainahility of these technologies. We review several common thermal treatment technologies for hydrocarbon-contaminated soils, assess their potential environmental impacts, and propose frameworks for sustainable and low-impact deployment based on a holistic consideration of energy and water requirements, ecosystem ecology, and soil science. There is no universally appropriate thermal treatment technology. Rather, the appropriate choice depends on the contamination scenario (including the type of hydrocarbons present) and on site-specific considerations such as soil properties, water availability, and the heat sensitivity of contaminated soils. Overall, the convergence of treatment process engineering with soil science, ecosystem ecology, and plant biology research is essential to fill critical knowledge gaps and improve both the removal efficiency and sustainability of thermal technologies.展开更多
The elements in the periodic table are the building blocks used to form substances with different compositions. Nevertheless, it is the properties of substances that are decisive for their existence and practical appl...The elements in the periodic table are the building blocks used to form substances with different compositions. Nevertheless, it is the properties of substances that are decisive for their existence and practical applications. Searching for new class of materials with exotic properties has always been challenging because of the complexity of both the theoretical and the experimental approaches developed so far. Here, we propose that the three ubiquitous and paramount attributes of all existing matter charge(Q), spin(S) or rotational motion, and linear motion(K) can be used to account for the formation of different types of matter/materials and their properties that have been or will be known to us. The three attributes or original codes can produce six primary codes which can further produce another sixty codes. The physical meanings represented by each code are unlocked. The table consisting of the 60 codes is introduced as the table of properties of codes of matter. We demonstrate that these codes can be used as building blocks to form new properties and new materials. Many new types of quasiparticles and new classes of materials with exotic properties of Q, S and K are predicted. Their possible experimental realizations are proposed. The possible applications of the codes of matter in other fields such as elementary particles, photonics and chemistry are briefly discussed. We know that there should be more new materials and new electronic, spin and photonic states to be discovered, but we do not know what they are. The codes of matter clearly reveal to us how many and what they are and how easily we can recognize what they are. Experimental and theoretical exploration for new forms of matter, new quasiparticles, or new electronic and spin states, or new states of photon or properties of light, as well as macroscopic entities with exotic properties represented by the codes of matter, is imminent.展开更多
基金supported by Chevron Corporationsupport of NSF EAR 0949337
文摘Thermal treatment technologies hold an important niche in the remediation of hydrocarbon- contaminated soils and sediments due to their ability to quickly and reliably meet cleanup standards. However, sustained high temperature can be energy intensive and can damage soil properties. Despite the broad applicability and prevalence of thermal remediation, little work has been done to improve the environmental compatibility and sustainahility of these technologies. We review several common thermal treatment technologies for hydrocarbon-contaminated soils, assess their potential environmental impacts, and propose frameworks for sustainable and low-impact deployment based on a holistic consideration of energy and water requirements, ecosystem ecology, and soil science. There is no universally appropriate thermal treatment technology. Rather, the appropriate choice depends on the contamination scenario (including the type of hydrocarbons present) and on site-specific considerations such as soil properties, water availability, and the heat sensitivity of contaminated soils. Overall, the convergence of treatment process engineering with soil science, ecosystem ecology, and plant biology research is essential to fill critical knowledge gaps and improve both the removal efficiency and sustainability of thermal technologies.
基金supported by the Australian Research Council Future Fellowship(Professorial)Program(FT130100778)
文摘The elements in the periodic table are the building blocks used to form substances with different compositions. Nevertheless, it is the properties of substances that are decisive for their existence and practical applications. Searching for new class of materials with exotic properties has always been challenging because of the complexity of both the theoretical and the experimental approaches developed so far. Here, we propose that the three ubiquitous and paramount attributes of all existing matter charge(Q), spin(S) or rotational motion, and linear motion(K) can be used to account for the formation of different types of matter/materials and their properties that have been or will be known to us. The three attributes or original codes can produce six primary codes which can further produce another sixty codes. The physical meanings represented by each code are unlocked. The table consisting of the 60 codes is introduced as the table of properties of codes of matter. We demonstrate that these codes can be used as building blocks to form new properties and new materials. Many new types of quasiparticles and new classes of materials with exotic properties of Q, S and K are predicted. Their possible experimental realizations are proposed. The possible applications of the codes of matter in other fields such as elementary particles, photonics and chemistry are briefly discussed. We know that there should be more new materials and new electronic, spin and photonic states to be discovered, but we do not know what they are. The codes of matter clearly reveal to us how many and what they are and how easily we can recognize what they are. Experimental and theoretical exploration for new forms of matter, new quasiparticles, or new electronic and spin states, or new states of photon or properties of light, as well as macroscopic entities with exotic properties represented by the codes of matter, is imminent.