现有方面级情感分析研究大多数往往从文本数据本身进行情感分析,而没有充分利用领域知识,忽略了语义依存信息的重要性,使得方面表示受噪声信息影响严重,出现噪声词注意权重高的可能。针对以上问题,结合领域知识,提出了一种剪枝算法和语...现有方面级情感分析研究大多数往往从文本数据本身进行情感分析,而没有充分利用领域知识,忽略了语义依存信息的重要性,使得方面表示受噪声信息影响严重,出现噪声词注意权重高的可能。针对以上问题,结合领域知识,提出了一种剪枝算法和语义-注意力机制相结合的方法(Pruning And Semantic At tention,PASA)针对服务领域特定方面进行情感分类。方法一方面结合领域知识对文本对应的语义依存树进行剪枝实现方面信息降噪,另一方面,通过利用语义-注意力机制进行增强并精确捕获方面的上下文描述信息,从而实现对方面情感极性的判断。为了验证所提出方法的正确性和有效性,在物流数据集、酒店评论数据集及SemEval 2014的Restaurant数据集进行了大量实验,结果表明,所提出的方法相对于其它方法具有明显优势,在垂直领域具有较好的应用前景。展开更多
方面级情感分析旨在明确文本中关于特定方面的情感极性。针对句中方面词由复杂词组组成造成方面情感极性判断错误的问题,论文提出了一种融合注意力机制的胶囊网络方面级情感分析模型。模型首先通过双向长短时记忆网络(Bi-directional Lo...方面级情感分析旨在明确文本中关于特定方面的情感极性。针对句中方面词由复杂词组组成造成方面情感极性判断错误的问题,论文提出了一种融合注意力机制的胶囊网络方面级情感分析模型。模型首先通过双向长短时记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)提取序列语义信息,使用N-gram模型对序列语义信息中的目标方面进行编码,然后利用交互注意力机制学习方面词和上下文之间的注意力,将最终生成的文本表示接入融合方面特征表示的胶囊网络进行分类,得到文本方面级的情感分类结果。模型利用胶囊网络有效提取部分与整体关系特征的能力,融合N-gram模型提取到的方面特征变换矩阵,改进了传统动态路由方法,增强了模型对方面情感极性的判断能力。该模型在SemEval-2014餐馆数据集和笔记本数据集上与多个模型进行了对比分析,实验结果显示该模型在两个数据集上的精确度达到了78.4%和72.4%,F1分数分别为0.687和0.668,证明融合交互注意力机制的胶囊网络模型在方面级情感分析任务方面具有较强的分类效果。展开更多
文摘现有方面级情感分析研究大多数往往从文本数据本身进行情感分析,而没有充分利用领域知识,忽略了语义依存信息的重要性,使得方面表示受噪声信息影响严重,出现噪声词注意权重高的可能。针对以上问题,结合领域知识,提出了一种剪枝算法和语义-注意力机制相结合的方法(Pruning And Semantic At tention,PASA)针对服务领域特定方面进行情感分类。方法一方面结合领域知识对文本对应的语义依存树进行剪枝实现方面信息降噪,另一方面,通过利用语义-注意力机制进行增强并精确捕获方面的上下文描述信息,从而实现对方面情感极性的判断。为了验证所提出方法的正确性和有效性,在物流数据集、酒店评论数据集及SemEval 2014的Restaurant数据集进行了大量实验,结果表明,所提出的方法相对于其它方法具有明显优势,在垂直领域具有较好的应用前景。
文摘方面级情感分析旨在明确文本中关于特定方面的情感极性。针对句中方面词由复杂词组组成造成方面情感极性判断错误的问题,论文提出了一种融合注意力机制的胶囊网络方面级情感分析模型。模型首先通过双向长短时记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)提取序列语义信息,使用N-gram模型对序列语义信息中的目标方面进行编码,然后利用交互注意力机制学习方面词和上下文之间的注意力,将最终生成的文本表示接入融合方面特征表示的胶囊网络进行分类,得到文本方面级的情感分类结果。模型利用胶囊网络有效提取部分与整体关系特征的能力,融合N-gram模型提取到的方面特征变换矩阵,改进了传统动态路由方法,增强了模型对方面情感极性的判断能力。该模型在SemEval-2014餐馆数据集和笔记本数据集上与多个模型进行了对比分析,实验结果显示该模型在两个数据集上的精确度达到了78.4%和72.4%,F1分数分别为0.687和0.668,证明融合交互注意力机制的胶囊网络模型在方面级情感分析任务方面具有较强的分类效果。