针对无人机在障碍间存在狭窄通道的城市环境中进行低空航路规划的问题,根据障碍之间的空间几何关系确定障碍之间的狭窄通道,再综合所有狭窄通道生成复杂环境中的狭窄通道路径树。设计了结合狭窄通道路径树的双向快速扩展随机树(Rapidly-...针对无人机在障碍间存在狭窄通道的城市环境中进行低空航路规划的问题,根据障碍之间的空间几何关系确定障碍之间的狭窄通道,再综合所有狭窄通道生成复杂环境中的狭窄通道路径树。设计了结合狭窄通道路径树的双向快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法,在两棵搜索树的扩展过程中,通过判断搜索树与狭窄通道路径树的位置关系,将狭窄通道路径树添加到搜索树上,实现搜索树在狭窄通道中的快速扩展,减少两棵搜索树的无用扩展,提升航路树生成的速度。仿真结果表明,该方法能够解决无人机在存在狭窄通道的复杂环境中进行快速有效航路规划的问题。展开更多
With the rapid growth of the number and flight time of unmanned aerial vehicles(UAVs),safety accidents caused by UAVs flight risk is increasing gradually.Safe air route planning is an effective means to reduce the ope...With the rapid growth of the number and flight time of unmanned aerial vehicles(UAVs),safety accidents caused by UAVs flight risk is increasing gradually.Safe air route planning is an effective means to reduce the operational risk of UAVs at the strategic level.The optimal air route planning model based on ground risk assessment is presented by considering the safety cost of UAV air route.Through the rasterization of the ground surface under the air route,the safety factor of each grid is defined with the probability of fatality on the ground per flight hour as the quantitative index.The air route safety cost function is constructed based on the safety factor of each grid.Then,the total cost function considering both air route safety and flight distance is established.The expected function of the ant colony algorithm is rebuilt and used as the algorithm to plan the air routes.The effectiveness of the new air route planning model is verified through the logistical distribution scenario on urban airspace.The results indicate that the new air route planning model considering safety factor can greatly improve the overall safety of air route under small increase of the total flight time.展开更多
文摘针对无人机在障碍间存在狭窄通道的城市环境中进行低空航路规划的问题,根据障碍之间的空间几何关系确定障碍之间的狭窄通道,再综合所有狭窄通道生成复杂环境中的狭窄通道路径树。设计了结合狭窄通道路径树的双向快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法,在两棵搜索树的扩展过程中,通过判断搜索树与狭窄通道路径树的位置关系,将狭窄通道路径树添加到搜索树上,实现搜索树在狭窄通道中的快速扩展,减少两棵搜索树的无用扩展,提升航路树生成的速度。仿真结果表明,该方法能够解决无人机在存在狭窄通道的复杂环境中进行快速有效航路规划的问题。
基金This work is supported by the Scientific Research Project of Tianjin Education Commission(No.2019KJ128).
文摘With the rapid growth of the number and flight time of unmanned aerial vehicles(UAVs),safety accidents caused by UAVs flight risk is increasing gradually.Safe air route planning is an effective means to reduce the operational risk of UAVs at the strategic level.The optimal air route planning model based on ground risk assessment is presented by considering the safety cost of UAV air route.Through the rasterization of the ground surface under the air route,the safety factor of each grid is defined with the probability of fatality on the ground per flight hour as the quantitative index.The air route safety cost function is constructed based on the safety factor of each grid.Then,the total cost function considering both air route safety and flight distance is established.The expected function of the ant colony algorithm is rebuilt and used as the algorithm to plan the air routes.The effectiveness of the new air route planning model is verified through the logistical distribution scenario on urban airspace.The results indicate that the new air route planning model considering safety factor can greatly improve the overall safety of air route under small increase of the total flight time.