The decomposition kinetics of glucose was studied in high-temperature liquid water (HTLW) from 180 to 220℃ under a pressure of 10 MPa. It was found the main products from glucose decomposition were 5-hydroxymethylf...The decomposition kinetics of glucose was studied in high-temperature liquid water (HTLW) from 180 to 220℃ under a pressure of 10 MPa. It was found the main products from glucose decomposition were 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA). The decomposition kinetics of 5-HMF and stability of LA in HTLW were further investigated. A kinetic model for glucose decomposition was proposed accordingly. In the model, a series of first-order reactions with the consideration of parallel by-reactions were used to illustrate the decomposition of glucose. The decomposition activation energies of glucose, 5-HMF, and LA were evaluated as 118.85, 95.40, and 31.29 kJ·mol^-1, respectively.展开更多
Titanium dioxide (TiO2) is widely employed as a solid photocatalyst for solar energy conversion and envi- ronmental remediation. The ability to construct porous TiO2 with controlled particle size and narrowed bandga...Titanium dioxide (TiO2) is widely employed as a solid photocatalyst for solar energy conversion and envi- ronmental remediation. The ability to construct porous TiO2 with controlled particle size and narrowed bandgap is an essential requirement for the design of highly efficient and recyclable photocatalysts. Here, we report a template- free acetic acid induced method for the synthesis of visible- light responsive carbon-doped TiO2 microplates with high crystallinity and mesoporous structure. It is shown that the electron-withdrawing bidentate carboxylate ligands derived from acetic acid can narrow the bandgap of TiO2 (1.84 eV) substantially. Moreover, the resultant microplate photo- catalysts exhibit excellent photocatalytic efficiency and solid-liquid separation performance, which will be bene- ficial for future industrial applications.展开更多
基金Supported by the National Natural Science Foundation of China (20674068) and the Natural Science Foundation of Zhejiang Province (Y405157).
文摘The decomposition kinetics of glucose was studied in high-temperature liquid water (HTLW) from 180 to 220℃ under a pressure of 10 MPa. It was found the main products from glucose decomposition were 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA). The decomposition kinetics of 5-HMF and stability of LA in HTLW were further investigated. A kinetic model for glucose decomposition was proposed accordingly. In the model, a series of first-order reactions with the consideration of parallel by-reactions were used to illustrate the decomposition of glucose. The decomposition activation energies of glucose, 5-HMF, and LA were evaluated as 118.85, 95.40, and 31.29 kJ·mol^-1, respectively.
基金Acknowledgments This work was supported by the National Natural Science Foundation of China (20966006), the Natural Science Foun- dation of the Inner Mongolia Autonomous Region (2014MS0218), and the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (NMGIRT-A1603).
文摘Titanium dioxide (TiO2) is widely employed as a solid photocatalyst for solar energy conversion and envi- ronmental remediation. The ability to construct porous TiO2 with controlled particle size and narrowed bandgap is an essential requirement for the design of highly efficient and recyclable photocatalysts. Here, we report a template- free acetic acid induced method for the synthesis of visible- light responsive carbon-doped TiO2 microplates with high crystallinity and mesoporous structure. It is shown that the electron-withdrawing bidentate carboxylate ligands derived from acetic acid can narrow the bandgap of TiO2 (1.84 eV) substantially. Moreover, the resultant microplate photo- catalysts exhibit excellent photocatalytic efficiency and solid-liquid separation performance, which will be bene- ficial for future industrial applications.