研究自然冷却的无槽管状永磁直线电机(tubular permanent magnet linear actuator,TPMLA)的机械气隙长度,通过约束和引导热量的流通路径来使永磁体的温度达到最低。通常无槽绕组产生的热量必须首先通过周围的空气进行传导,其散热条件比...研究自然冷却的无槽管状永磁直线电机(tubular permanent magnet linear actuator,TPMLA)的机械气隙长度,通过约束和引导热量的流通路径来使永磁体的温度达到最低。通常无槽绕组产生的热量必须首先通过周围的空气进行传导,其散热条件比有槽电机更加恶劣。虽然较小的机械气隙可以增强气隙磁密,但是绕组产生的大部分热量将会传到永磁体上,导致永磁体温升,并减小其剩磁,使永磁体有失磁风险。因此,合理的机械气隙长度对于无槽管状永磁直线电机极其重要。建立电机的电磁和热模型,并将结果与有限元方法进行比较。制作3台不同机械气隙的样机,并进行实验。结果表明,机械气隙对限制和引导热流具有重要的作用,通过增加机械气隙长度来降低永磁体温度的方法取得了良好的效果。展开更多
文摘研究自然冷却的无槽管状永磁直线电机(tubular permanent magnet linear actuator,TPMLA)的机械气隙长度,通过约束和引导热量的流通路径来使永磁体的温度达到最低。通常无槽绕组产生的热量必须首先通过周围的空气进行传导,其散热条件比有槽电机更加恶劣。虽然较小的机械气隙可以增强气隙磁密,但是绕组产生的大部分热量将会传到永磁体上,导致永磁体温升,并减小其剩磁,使永磁体有失磁风险。因此,合理的机械气隙长度对于无槽管状永磁直线电机极其重要。建立电机的电磁和热模型,并将结果与有限元方法进行比较。制作3台不同机械气隙的样机,并进行实验。结果表明,机械气隙对限制和引导热流具有重要的作用,通过增加机械气隙长度来降低永磁体温度的方法取得了良好的效果。