传统火灾预警方法存在检测精度低、未发生火灾时不能及时预警的问题,提出一种基于深度学习的早期火灾预警算法.首先,使用红外热像仪采集特定场景中的红外图像,构建数据集;其次,使用改进的YOLOv4算法进行训练得到网络权重,在主干网络的3...传统火灾预警方法存在检测精度低、未发生火灾时不能及时预警的问题,提出一种基于深度学习的早期火灾预警算法.首先,使用红外热像仪采集特定场景中的红外图像,构建数据集;其次,使用改进的YOLOv4算法进行训练得到网络权重,在主干网络的3个输出特征层后引入卷积注意力模块,提升网络对关键信息的提取能力;在主干网络和路径聚合网络中增加卷积层,提高特征提取的能力;最后,使用提出的智能火灾检测(intelligent fire detection,IFD)算法对预测图像处理并根据得分评估火灾隐患.实验结果表明,改进YOLOv4算法在数据集上的mAP达到98.31%,比原始YOLOv4算法的mAP提高了2.7%,FPS达到37.1 f/s,IFD算法精确度为93%,误检率为3.2%.提出的早期火灾预警算法具有检测精度高,未形成火灾时及时预警的优点.展开更多
针对早期火灾信息特点,提出了一种基于二叉树的最小二乘小波支持向量机(Least squareswavelet support vector machine,LS-WSVM)多类分类方法.该方法首先把主成份分析用于早期火灾信息的特征提取.然后,把二叉树结构和LS-WSVM相结合,提...针对早期火灾信息特点,提出了一种基于二叉树的最小二乘小波支持向量机(Least squareswavelet support vector machine,LS-WSVM)多类分类方法.该方法首先把主成份分析用于早期火灾信息的特征提取.然后,把二叉树结构和LS-WSVM相结合,提出了基于二叉树的LS-WSVM多类分类模型,不仅避免了盲目分类和不可分情况,而且提高了分类速度和泛化能力.最后,用该模型对特征信息进行处理,从而实现了对早期火灾的多类识别.早期火灾分类实验结果表明,该方法比采用径向基核函数的最小二乘支持向量机多类分类方法具有更好的识别效果和更快的分类速度.展开更多
文摘传统火灾预警方法存在检测精度低、未发生火灾时不能及时预警的问题,提出一种基于深度学习的早期火灾预警算法.首先,使用红外热像仪采集特定场景中的红外图像,构建数据集;其次,使用改进的YOLOv4算法进行训练得到网络权重,在主干网络的3个输出特征层后引入卷积注意力模块,提升网络对关键信息的提取能力;在主干网络和路径聚合网络中增加卷积层,提高特征提取的能力;最后,使用提出的智能火灾检测(intelligent fire detection,IFD)算法对预测图像处理并根据得分评估火灾隐患.实验结果表明,改进YOLOv4算法在数据集上的mAP达到98.31%,比原始YOLOv4算法的mAP提高了2.7%,FPS达到37.1 f/s,IFD算法精确度为93%,误检率为3.2%.提出的早期火灾预警算法具有检测精度高,未形成火灾时及时预警的优点.
文摘针对早期火灾信息特点,提出了一种基于二叉树的最小二乘小波支持向量机(Least squareswavelet support vector machine,LS-WSVM)多类分类方法.该方法首先把主成份分析用于早期火灾信息的特征提取.然后,把二叉树结构和LS-WSVM相结合,提出了基于二叉树的LS-WSVM多类分类模型,不仅避免了盲目分类和不可分情况,而且提高了分类速度和泛化能力.最后,用该模型对特征信息进行处理,从而实现了对早期火灾的多类识别.早期火灾分类实验结果表明,该方法比采用径向基核函数的最小二乘支持向量机多类分类方法具有更好的识别效果和更快的分类速度.