Carbon fiber nanoelectrodes(200-300 nm) were firstly used to amperometricaly monitor the dopamine release from single PC12 cells with temporal resolution and especially more higher spatial resolution than those obtain...Carbon fiber nanoelectrodes(200-300 nm) were firstly used to amperometricaly monitor the dopamine release from single PC12 cells with temporal resolution and especially more higher spatial resolution than those obtained by using microelectrodes. When the nanoelectrode was in a distance 1 μm above the PC12 cell, only one peak signal corresponding to a single vesicle exocytotic event was detected caused from the stimulation with 1 mmol/L nicotine. The spatial difference of exocytosis was also detected by placing the electrode onto the different locations of the cell body, the results have demostrated that the spatial distribution of dopamine in cells is not uniform and the time for stimulating secretion is very different. Nanoelectrodes electrochemical method can provide a powerful tool for observing the temporal and spatial characteristics of the secretion from single cells directly.展开更多
文摘Carbon fiber nanoelectrodes(200-300 nm) were firstly used to amperometricaly monitor the dopamine release from single PC12 cells with temporal resolution and especially more higher spatial resolution than those obtained by using microelectrodes. When the nanoelectrode was in a distance 1 μm above the PC12 cell, only one peak signal corresponding to a single vesicle exocytotic event was detected caused from the stimulation with 1 mmol/L nicotine. The spatial difference of exocytosis was also detected by placing the electrode onto the different locations of the cell body, the results have demostrated that the spatial distribution of dopamine in cells is not uniform and the time for stimulating secretion is very different. Nanoelectrodes electrochemical method can provide a powerful tool for observing the temporal and spatial characteristics of the secretion from single cells directly.