期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于空间插值的室内湿度场模拟方法比较分析 被引量:5
1
作者 郑世健 付聪 +1 位作者 万博雨 刘知贵 《节水灌溉》 北大核心 2019年第2期7-10,17,共5页
空间插值是研究空间因子区域分布特征的重要方法,可实现空间因子可视化展示。不同的空间因子受影响不同,导致空间插值方法的可靠性和适用性存在差异。为了确定室内区域湿度场动态实时化模拟的最佳方法,以Inter实验室内54个温湿度传感器... 空间插值是研究空间因子区域分布特征的重要方法,可实现空间因子可视化展示。不同的空间因子受影响不同,导致空间插值方法的可靠性和适用性存在差异。为了确定室内区域湿度场动态实时化模拟的最佳方法,以Inter实验室内54个温湿度传感器的一个月采集数据为研究案例。综合分析了反距离权重插值、径向基函数插值、普通克里金插值、协同克里金插值、时空克里金插值和时空协同克里金插值6种空间插值方法,并采用交叉验证的方法对插值结果进行比较。结果表明,时空协同克里金插值方法在模拟准确度、可信度和反应极值等能力都要优于其余几种插值方法。 展开更多
关键词 空间插值 湿度场 时空协同克里金 湿度场模拟
下载PDF
Spatiotemporal interpolation of precipitation across Xinjiang, China using space-time CoKriging 被引量:1
2
作者 HU Dan-gui SHU Hong 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第3期684-694,共11页
In various environmental studies, geoscience variables not only have the characteristics of time and space, but also are influenced by other variables. Multivariate spatiotemporal variables can improve the accuracy of... In various environmental studies, geoscience variables not only have the characteristics of time and space, but also are influenced by other variables. Multivariate spatiotemporal variables can improve the accuracy of spatiotemporal estimation. Taking the monthly mean ground observation data of the period 1960–2013 precipitation in the Xinjiang Uygur Autonomous Region, China, the spatiotemporal distribution from January to December in 2013 was respectively estimated by space-time Kriging and space-time CoKriging. Modeling spatiotemporal direct variograms and a cross variogram was a key step in space-time CoKriging. Taking the monthly mean air relative humidity of the same site at the same time as the covariates, the spatiotemporal direct variograms and the spatiotemporal cross variogram of the monthly mean precipitation for the period 1960–2013 were modeled. The experimental results show that the space-time CoKriging reduces the mean square error by 31.46% compared with the space-time ordinary Kriging. The correlation coefficient between the estimated values and the observed values of the space-time CoKriging is 5.07% higher than the one of the space-time ordinary Kriging. Therefore, a space-time CoKriging interpolation with air humidity as a covariate improves the interpolation accuracy. 展开更多
关键词 space-time CoKriging product-sum model VARIOGRAM PRECIPITATION interpolation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部