期刊文献+
共找到104篇文章
< 1 2 6 >
每页显示 20 50 100
基于时空图卷积神经网络的强迫振荡定位与传播预测 被引量:2
1
作者 冯双 彭祥佳 +5 位作者 陈佳宁 陆友文 陈力 洪希 雷家兴 汤奕 《中国电机工程学报》 EI CSCD 北大核心 2024年第4期1298-1309,I0005,共13页
振荡源定位与传播预测是抑制强迫振荡和保证电力系统稳定的关键。现有方法未能充分利用电网的空间拓扑信息和振荡的时序特征,限制了定位和预测的精度。因此,该文提出一种基于时空图卷积神经网络的强迫振荡定位与传播预测方法。首先,根... 振荡源定位与传播预测是抑制强迫振荡和保证电力系统稳定的关键。现有方法未能充分利用电网的空间拓扑信息和振荡的时序特征,限制了定位和预测的精度。因此,该文提出一种基于时空图卷积神经网络的强迫振荡定位与传播预测方法。首先,根据节点特征和拓扑信息构建图数据,考虑到强迫振荡传播的快速性,通过切比雪夫多项式扩大节点空间感受野,提取振荡空间特征。同时,利用门控循环单元网络提取多个节点振荡数据的时序关联,通过时空图卷积单元融合空间和时序特征。然后,将定位与传播预测分别建模为分类和回归问题,训练时空图卷积神经网络模型。算例分析表明,所提方法具有更高的准确率,且在噪声和部分节点数据缺失的情况下依然具有较好的性能。 展开更多
关键词 强迫振荡 振荡源定位 振荡传播 时空图卷积神经网络
下载PDF
交通速度预测时空图卷积网络及其FPGA实现研究
2
作者 谭会生 杨威 严舒琪 《电子测量技术》 北大核心 2024年第18期108-119,共12页
时空图卷积网络(STGCN)通过图卷积和时间卷积捕获交通数据的空间依赖性和时间依赖性,可有效提升交通速度预测的精度。但是硬件实现交通速度预测STGCN具有计算量大难以满足实际应用的实时性要求、资源消耗大导致成本增高等问题,在优化交... 时空图卷积网络(STGCN)通过图卷积和时间卷积捕获交通数据的空间依赖性和时间依赖性,可有效提升交通速度预测的精度。但是硬件实现交通速度预测STGCN具有计算量大难以满足实际应用的实时性要求、资源消耗大导致成本增高等问题,在优化交通速度预测STGCN模型基础上,提出了一种交通速度预测STGCN的FPGA实现结构组合优化的方法。首先,通过轻量化裁剪和预测数据位宽的精确选择,对交通速度预测STGCN进行了模型优化,以降低计算复杂度和资源消耗,并经过Python仿真验证其可行性。其次,通过采用流水线、并行计算和数据交替流水存取等组合优化策略,提出了一种交通速度预测STGCN的FPGA实现结构组合优化的方法,以提升系统计算速度。最后,使用Verilog编程对交通速度预测STGCN进行了FPGA的实现仿真和硬件测试。利用PeMSD7(M)数据集进行实验,结果显示FPGA实现单数据交通速度预测的时间为355.5μs,相比CPU、GPU平台及FPGA设计方案1对比,其处理速度最大分别提高了25.9倍、6.7倍和3.5倍,证明了交通速度预测STGCN的FPGA实现结构组合优化方法,在保持预测准确性的前提下可较大幅度的提升系统处理速度。 展开更多
关键词 交通速度预测 时空图卷积网络 FPGA 硬件实现结构 流水线 并行结构
下载PDF
基于全局时空图卷积神经网络的城市交通流量预测
3
作者 王佳昊 黎文斌 +1 位作者 郭仕尧 向平 《计算机科学》 CSCD 北大核心 2024年第S02期534-542,共9页
交通流量预测在智能交通系统(ITS)中发挥着重要作用,将城市中复杂的时空相关性高效且全面地提取出来是交通流量预测中面临的关键挑战。交通速度不仅在时间维度上具有短期和长期周期性依赖关系,而且在空间维度上具有局部和全局依赖性,现... 交通流量预测在智能交通系统(ITS)中发挥着重要作用,将城市中复杂的时空相关性高效且全面地提取出来是交通流量预测中面临的关键挑战。交通速度不仅在时间维度上具有短期和长期周期性依赖关系,而且在空间维度上具有局部和全局依赖性,现有方法对捕获交通数据的时空依赖关系有一定的局限。为此,文中提出了一种基于全局时空图卷积神经网络(Global Spatial-Temporal Graph Convolutional Network,GSTGCN)的深度学习模型,用于解决在城市交通速度预测的局限性。该模型中存在3种时空分量,可相应地对交通数据中的近期、天周期、周周期这3种不同的时空相关性进行建模。每个时空分量都由时间模块和空间模块组成,时间模块为了更好地获取交通数据的时间维度信息,引入了Informer机制以自适应地分配特征权重。空间模型为了更好地获取交通数据的空间关系,引入了图卷积神经网络来提取交通数据的局部和全局空间信息。在两个不同的真实数据集上进行了测试,结果表明所提出的GSTGCN优于最先进的基线模型。 展开更多
关键词 交通流量预测 全局时空图卷积网络 时空依赖性
下载PDF
时空图卷积网络的骨架识别硬件加速器设计
4
作者 谭会生 严舒琪 杨威 《电子测量技术》 北大核心 2024年第11期36-43,共8页
随着人工智能技术的不断发展,神经网络的数据规模逐渐扩大,神经网络的计算量也迅速攀升。为了减少时空图卷积神经网络的计算量,降低硬件实现的资源消耗,提升人体骨架识别时空图卷积神经网络(ST-GCN)实际应用系统的处理速度,利用现场可... 随着人工智能技术的不断发展,神经网络的数据规模逐渐扩大,神经网络的计算量也迅速攀升。为了减少时空图卷积神经网络的计算量,降低硬件实现的资源消耗,提升人体骨架识别时空图卷积神经网络(ST-GCN)实际应用系统的处理速度,利用现场可编程门阵列(FPGA),设计开发了一个基于时空图卷积神经网络的骨架识别硬件加速器。通过对原网络模型进行结构优化与数据量化,减少了FPGA实现约75%的计算量;利用邻接矩阵稀疏性的特点,提出了一种稀疏性矩阵乘加运算的优化方法,减少了约60%的乘法器资源消耗。经过对人体骨架识别实验验证,结果表明,在时钟频率100 MHz下,相较于CPU,FPGA加速ST-GCN单元,加速比达到30.53;FPGA加速人体骨架识别,加速比达到6.86。 展开更多
关键词 人体骨架识别 时空图卷积神经网络(ST-GCN) 硬件加速器 现场可编程门阵列(FPGA) 稀疏矩阵乘加运算硬件优化
下载PDF
基于改进时空图卷积网络的人员交互行为识别 被引量:1
5
作者 雷静思 刘双广 +1 位作者 刘乔寿 王祥雪 《计算机应用与软件》 北大核心 2024年第4期151-158,共8页
针对人员交互行为识别存在的多模态数据融合方法导致的识别准确率与模型性能无法同时满足的问题,提出一种基于改进时空图卷积网络的人员交互行为识别方法。将单模态骨架数据引入级联的密集时空图卷积块网络中获得丰富的时空特征信息,提... 针对人员交互行为识别存在的多模态数据融合方法导致的识别准确率与模型性能无法同时满足的问题,提出一种基于改进时空图卷积网络的人员交互行为识别方法。将单模态骨架数据引入级联的密集时空图卷积块网络中获得丰富的时空特征信息,提高特征复用率;设计一种增强时空图卷积网络(EST-GCN)单元提高网络对关节点之间的信息表征能力;引入一种运动特征因子衡量肢体不同关节的重要程度,提高模型识别效果。在Kinetics数据集和办案区场景数据集上的实验结果表明,所提出方法在识别效果上具有一定优势,且该方法在模型复杂度及运行效率上具有很好的竞争力。 展开更多
关键词 交互行为 时空图卷积网络 骨架数据 密集
下载PDF
基于多尺度时空图卷积网络与Transformer融合的多节点短期电力负荷预测方法
6
作者 孟衡 张涛 +3 位作者 王金 张晋源 李达 时光蕤 《电网技术》 EI CSCD 北大核心 2024年第10期4297-4305,I0113-I0117,I0112,共15页
深度学习的发展为处理电力系统中海量的负荷数据提供了良好的基础。然而,现有的负荷预测方法大多采用历史负荷序列的时间相关性构建模型,没有同时考虑相邻节点之间存在的空间耦合特性和外部因素的影响。由于图卷积神经网络在挖掘电力系... 深度学习的发展为处理电力系统中海量的负荷数据提供了良好的基础。然而,现有的负荷预测方法大多采用历史负荷序列的时间相关性构建模型,没有同时考虑相邻节点之间存在的空间耦合特性和外部因素的影响。由于图卷积神经网络在挖掘电力系统拓扑结构中的空间特征上具有巨大潜力,因此,该文提出一种基于属性增强的多尺度时空图卷积神经网络与Transformer融合的电力系统多节点负荷预测方法。首先,将外部因素建模为动态属性和静态属性,设计属性增强单元对这些因素进行编码,并利用快速最大互信息系数量化各节点负荷的动态耦合信息。其次,采用多尺度时空图卷积网络挖掘节点间的短期时空特征,同时采用Transformer补充挖掘各节点负荷的长期时域特征。最后,使用门控融合层对两个模型进行融合。在纽约公开负荷数据集上的实验结果表明,所提方法能够充分挖掘多节点负荷数据中的时空耦合特性,具有更高的预测精度和稳定性。 展开更多
关键词 多节点负荷预测 多尺度时空图卷积神经网络 属性增强 TRANSFORMER
下载PDF
基于时空关联的时空图卷积神经网络城市轨道交通进站客流预测
7
作者 王润祺 郝妍熙 +2 位作者 胡华 方勇 刘志钢 《城市轨道交通研究》 北大核心 2024年第9期91-96,共6页
[目的]准确的短时客流预测对于提高超大规模城市轨道交通线网的运营和管理效率具有重要意义,而目前现有研究对于深度挖掘时空关联性仍不够充分,为此基于短时客流的时空规律提出了基于客流时空关联特征的STGCN(时空图卷积神经网络)模型。... [目的]准确的短时客流预测对于提高超大规模城市轨道交通线网的运营和管理效率具有重要意义,而目前现有研究对于深度挖掘时空关联性仍不够充分,为此基于短时客流的时空规律提出了基于客流时空关联特征的STGCN(时空图卷积神经网络)模型。[方法]首先,通过切比雪夫图卷积网络捕捉超大规模城市轨道交通网络的空间相关性,借助门控循环单元挖掘多时空关联特征下客流的时间相关性;然后,分析待预测车站历史客流数据相关性及OD(起讫点)客流数据相关性,以深入提取时空相关性;最后,结合客流时空关联特征建立STGCN模型。[结果及结论]以上海地铁江苏路站为例,进行短时进站客流预测,结果表明采用时空关联特征参数的预测结果较未加入特征参数的预测精度提高了16%,预测效果较优。 展开更多
关键词 城市轨道交通 短时进站客流预测 时空关联性 时空图卷积神经网络
下载PDF
基于双重注意力时空图卷积网络的行人轨迹预测
8
作者 向晓倩 陈璟 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第12期2586-2595,共10页
当前行人轨迹预测研究面临两大挑战:1)如何有效提取行人前后帧之间的时空相关性;2)如何避免在轨迹采样过程中受到采样偏差的影响而导致性能下降.针对以上问题,提出基于双重注意力时空图卷积网络与目的抽样网络的行人轨迹预测模型.利用... 当前行人轨迹预测研究面临两大挑战:1)如何有效提取行人前后帧之间的时空相关性;2)如何避免在轨迹采样过程中受到采样偏差的影响而导致性能下降.针对以上问题,提出基于双重注意力时空图卷积网络与目的抽样网络的行人轨迹预测模型.利用时间注意力捕获行人前后帧的关联性,利用空间注意力获取周围行人之间的相关性,通过时空图卷积进一步提取行人之间的时空相关性.引入可学习的抽样网络解决随机抽样导致的分布不均匀的问题.大量实验表明,在ETH和UCY数据集上,新方法的精度与当前最先进的方法相当,且模型参数量减少1.65×10^(4),推理时间缩短0.147 s;在SDD数据集上精度虽略有下降,但模型参数量减少了3.46×10^(4),展现出良好的性能平衡,能为行人轨迹预测提供新的有效途径. 展开更多
关键词 轨迹预测 深度学习 卷积网络 时空图卷积 时间注意力 空间注意力 轨迹采样
下载PDF
基于实时滑动分解的融合时空图卷积流量预测研究
9
作者 牛帅 王景升 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第10期4002-4013,共12页
为解决目前数据分解方法存在的信息泄露以及训练和测试时分量个数不一致的问题,提出一种新颖的模型−无信息泄露的实时滑动自适应噪声完备集合经验模态分解和注意力机制的融合时空图卷积,称之为EASTGCN。在模型输入前端,提出一种实时滑... 为解决目前数据分解方法存在的信息泄露以及训练和测试时分量个数不一致的问题,提出一种新颖的模型−无信息泄露的实时滑动自适应噪声完备集合经验模态分解和注意力机制的融合时空图卷积,称之为EASTGCN。在模型输入前端,提出一种实时滑动分解方法,此方法使得训练集随着时间轴动态变化,在每次分解过程中使用的均是实时和历史信息并未使用未来信息,更加符合实时预测任务需求。紧接着,利用自适应噪声完备集合经验模态分解技术将交通流数据进行分解得到一系列本征模态函数分量,将分量分别按照邻近、日和周相关等时段构建多尺度输入以表达时序数据的时间相似性;然后,构建一个时空融合网络有向图,有向图由表示时间相似性的时间图和反映空间连通流向性的空间图组成,用以表达路网节点所包含的时空相似性信息;同时,在模型训练过程中通过引入时空注意力机制使得模型自适应为时空关系分配不同的权重以便关注相似性更强的关键节点来提高模型预测精度。最后,为了验证EASTGCN模型的稳定性和鲁棒性,分别设计了多因素输入实验和多步长对比实验,并在公开的数据集上进行了实例验证。研究结果表明,EASTGCN模型在多步长预测任务中指标增幅跨度最小且性能最稳定;多因素输入的EASTGCN模型在PEMS04数据集的MAE、RMSE指标上相对于单因素输入模型来说分别降低3.83%~27.03%、4.24%~12.77%,在PEMS08数据集的MAE、RMSE指标上降低0.91%~38.69%、0.07%~31.21%。总的来说,EASTGCN模型不论是在长期预测任务还是在预测精度上均有更好的表现,实时滑动分解方法为“分解+预测”组合模型提供了一种新的思路。 展开更多
关键词 流量预测 时空图卷积 自适应噪声完备集合经验模态分解 多尺度输入 实时滑动
下载PDF
基于可拓展自注意力时空图卷积神经网络的用户轨迹识别模型
10
作者 雷天亮 吉立新 +2 位作者 王庚润 刘树新 巫岚 《电子学报》 EI CAS CSCD 北大核心 2024年第11期3741-3750,共10页
用户轨迹识别作为一项重要的时空数据挖掘任务,广泛应用于基于位置的个性化服务推荐、行程规划、犯罪行为检测和目标跟踪等领域,但依然面临预测精度不高的问题,主要原因是轨迹数据低采样且稀疏、轨迹类别数量巨大等.针对上述问题提出了... 用户轨迹识别作为一项重要的时空数据挖掘任务,广泛应用于基于位置的个性化服务推荐、行程规划、犯罪行为检测和目标跟踪等领域,但依然面临预测精度不高的问题,主要原因是轨迹数据低采样且稀疏、轨迹类别数量巨大等.针对上述问题提出了基于可拓展自注意力时空图卷积神经网络的用户轨迹识别模型(Expandable Self-Attention Spatio-Temporal Graph Convolutional Neural Networks,ESAST-GCNN),该模型采用时空图卷积神经网络方式,深度挖掘时序特征与空间特征关系,并进行预测与拓展,结合自注意力机制获取用户轨迹特征向量内部相关性,最终根据该特征向量进行用户轨迹身份识别.在两个真实数据集上进行测试后发现,ESAST-GCNN相较于TULER-GRU(TUL via Embedding and RNN)在Geolife与Gowalla中准确率分别提高了13.95%、10.63%,实验结果表明ESAST-GCNN优于其他模型,识别效果更好,适用范围更广. 展开更多
关键词 用户轨迹识别 时空图卷积神经网络 自注意力机制 深度学习 时空序列
下载PDF
基于时间动态帧选择与时空图卷积的可解释骨架行为识别
11
作者 梁成武 杨杰 +3 位作者 胡伟 蒋松琪 钱其扬 侯宁 《图学学报》 CSCD 北大核心 2024年第4期791-803,共13页
骨架行为识别是计算机视觉和机器学习领域的研究热点。现有数据驱动型神经网络往往忽略骨架序列时间动态帧选择和模型内在人类可理解的决策逻辑,造成可解释性不足。为此提出一种基于时间动态帧选择与时空图卷积的可解释骨架行为识别方法... 骨架行为识别是计算机视觉和机器学习领域的研究热点。现有数据驱动型神经网络往往忽略骨架序列时间动态帧选择和模型内在人类可理解的决策逻辑,造成可解释性不足。为此提出一种基于时间动态帧选择与时空图卷积的可解释骨架行为识别方法,以提高模型的可解释性和识别性能。首先利用骨架帧置信度评价函数删除低质骨架帧,以解决骨架序列噪声问题。其次基于人体运动领域知识,提出自适应时间动态帧选择模块用于计算运动行为显著区域,以捕捉关键人体运动骨架帧的动态规律。为学习行为骨架节点内在拓扑结构,改进时空图卷积网络用于可解释骨架行为识别。在NTU RGB+D,NTU RGB+D 120和FineGym这3个大型公开数据集上的实验评估表明,该方法的骨架行为识别准确率优于对比方法并具有可解释性。 展开更多
关键词 行为识别 骨架序列 可解释 运动显著区域 时空图卷积网络
下载PDF
基于聚合时空图卷积网络的多风场超短期风速预测
12
作者 徐辰晓 崔承刚 +3 位作者 郭为民 杨宁 刘备 孟青叶 《电源学报》 CSCD 北大核心 2024年第4期133-142,共10页
在一定环境内区域风电场呈不规则分布的条件下,传统卷积神经网络预测方法无法体现出各区域风场的分布状态和影响关系,难以实现对风速的准确预测。针对此问题,采用图卷积网络进行特征建模,并根据多风场的拓扑结构和各区域风场风速的互相... 在一定环境内区域风电场呈不规则分布的条件下,传统卷积神经网络预测方法无法体现出各区域风场的分布状态和影响关系,难以实现对风速的准确预测。针对此问题,采用图卷积网络进行特征建模,并根据多风场的拓扑结构和各区域风场风速的互相关系数建立连通图和权重矩阵。其次,依赖风场风速的时间动态特征,采用改进并列式卷积结构获取同一风场下多时间段的风速序列相关性。再次,利用风场风速的空间相关性和延时效应,采用二阶聚合方法将不同区域内风速的时空特征聚合。最后,经某区域风场数据验证表明,在0~4 h预测尺度下该方法在多风场超短期风速预测中具有提取时空特征并提升预测性能的效果。 展开更多
关键词 风速预测 聚合时空图卷积网络 时空相关性
下载PDF
共享单车需求量的自适应时空图卷积网络预测
13
作者 罗兆杰 《长江信息通信》 2024年第9期36-39,共4页
为解决共享单车分布不平衡问题,基于纽约市Citi Bike共享单车数据,构建无先验道路空间信息的自适应时空图卷积网络(AG-TCNBiLSTM)用于共享单车需求量预测。模型首先构建连通图和交互图表达长期依赖关系,通过多头图注意力网络挖掘短期依... 为解决共享单车分布不平衡问题,基于纽约市Citi Bike共享单车数据,构建无先验道路空间信息的自适应时空图卷积网络(AG-TCNBiLSTM)用于共享单车需求量预测。模型首先构建连通图和交互图表达长期依赖关系,通过多头图注意力网络挖掘短期依赖关系,融合长短期依赖图得到最优图结构;其次,整合ChebNet、TCN和Bi-LSTM捕捉时空依赖性。利用共享单车数据集对需求量的预测结果表明,AG-TCNBiLSTM相较于其它基线模型,预测效果最佳,验证了其在捕捉交通网络动态变化的有效性。 展开更多
关键词 共享单车 需求量预测 图注意力网络 自适应时空图卷积
下载PDF
基于时空图卷积和注意力模型的航拍暴力行为识别 被引量:3
14
作者 邵延华 李文峰 +3 位作者 张晓强 楚红雨 饶云波 陈璐 《计算机科学》 CSCD 北大核心 2022年第6期254-261,共8页
公共区域暴力行为频繁发生,视频监控对维护公共安全具有重要意义。相比固定摄像头,无人机具有监控灵活性,然而航拍成像中无人机快速运动以及姿态、高度的变化,使得目标出现运动模糊、尺度变化大的问题,针对该问题,设计了一种融合注意力... 公共区域暴力行为频繁发生,视频监控对维护公共安全具有重要意义。相比固定摄像头,无人机具有监控灵活性,然而航拍成像中无人机快速运动以及姿态、高度的变化,使得目标出现运动模糊、尺度变化大的问题,针对该问题,设计了一种融合注意力机制的时空图卷积网络AST-GCN(Attention Spatial-Temporal Graph Convolutional Networks),用于实现航拍视频暴力行为识别。该方法主要分为两步:利用关键帧检测网络完成初定位以及AST-GCN网络通过序列特征完成行为识别确认。首先,针对视频暴力行为定位,设计关键帧级联检测网络,实现基于人体姿态估计的暴力行为关键帧检测,初步判断暴力行为的发生时间。其次,在视频序列中提取关键帧前后的多帧人体骨架信息,对骨架数据进行归一化、筛选和补全,以提高对不同场景及部分关节点缺失的鲁棒性,并根据提取的骨架信息构建骨架时序-空间信息表达矩阵。最后,时空图卷积对多帧人体骨架信息进行分析识别,融合注意力模块,提升特征表达能力,完成暴力行为识别。在自建航拍暴力行为数据集上进行验证,实验结果表明,融合注意力机制的时空图卷积AST-GCN能实现航拍场景暴力行为识别,识别准确率达86.6%。提出的航拍暴力行为识别方法对于航拍视频监控和行为理解等应用具有重要的工程价值和科学意义。 展开更多
关键词 暴力行为识别 人体姿态估计 航拍 时空图卷积 级联网络 注意力机制
下载PDF
基于轻量时空图卷积模型的路网交通流预测 被引量:6
15
作者 贺文武 裴博彧 +1 位作者 毛国君 陈维亚 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2022年第9期2552-2562,共11页
交通流预测是智能交通系统的重要组成部分。针对路网交通流天然具有的时空依赖性,结合交通流时序因果卷积与路网空间拓扑结构图卷积,提出一种基于递增式丢边的轻量时空图卷积神经网络模型,实现时空特征的有效融合,建立路网交通流高精度... 交通流预测是智能交通系统的重要组成部分。针对路网交通流天然具有的时空依赖性,结合交通流时序因果卷积与路网空间拓扑结构图卷积,提出一种基于递增式丢边的轻量时空图卷积神经网络模型,实现时空特征的有效融合,建立路网交通流高精度预测模型,提高交通流预测精度的同时降低其计算资源消耗、缩短预测响应时间。模型以单“三明治”式时空卷积模块为核心组件,减少时间卷积与空间卷积间的高计算消耗交互,有效提取交通流时空特征的同时保持整体结构轻量,其中的“厚夹心”空间图卷积采用多层图卷积网络以捕获远程高阶邻居节点信息、扩大空间感受野,并引入递增式丢边策略分阶处理邻居节点边,消解其潜在的过平滑。在模型训练中引入动态初始学习率,随模型训练进程演进动态调适学习率,进一步提升优化器性能,保证模型整体上的优越性。以真实基准交通流数据开展实验,对比分析本文所构建模型与多种相关基线模型的训练时间、预测精度等指标,并分析讨论所建模型在路网各节点上预测结果的离散性及其精度,解析多层图卷积可能具有的过平滑现象以及递增式丢边策略的消解能力。研究结果表明,本文所构建模型能有效捕获路网交通流的时空特性,以更少的训练时间获得更高的预测精度。 展开更多
关键词 智慧交通 路网交通流预测 轻量时空图卷积 递增式丢边 动态初始学习率
下载PDF
基于时空图卷积网络的交通事故风险预测研究 被引量:4
16
作者 王庆荣 魏怡萌 +1 位作者 朱昌锋 田可可 《计算机工程》 CAS CSCD 北大核心 2022年第11期22-29,共8页
交通事故的预测是通过对过去路段发生的交通事故进行分析,在综合考虑影响交通事故的相关因素后,对未来路段的交通事故发生状态进行预测。以往的大多数研究通常采用传统机器学习方法或单一深度学习模型预测法,利用网格化确定预测空间的单... 交通事故的预测是通过对过去路段发生的交通事故进行分析,在综合考虑影响交通事故的相关因素后,对未来路段的交通事故发生状态进行预测。以往的大多数研究通常采用传统机器学习方法或单一深度学习模型预测法,利用网格化确定预测空间的单位,忽略了影响交通事故的天气、路况等外部因素,导致模型的预测性能不佳。提出一种基于时空特性的城市交通事故风险预测模型,在模型中使用改进的时空图卷积网络,利用图卷积网络(GCN)提取空间相关特征,并加入批标准化层解决梯度消失爆炸问题。在时间维度上采用门控线性单元(GLU)实现一维卷积操作,提取时间相关特征,并将GCN和GLU组合成时空卷积模块提取时空相关特征,使用均方误差损失函数解决样本数据零膨胀问题。实验结果表明,与GLU、SDCAE和ConvLSTM模型相比,该模型的RMSE指标分别降低了28%、4.87%、4.19%,能有效捕获时空相关性,综合性能得到较大提升。 展开更多
关键词 深度学习 城市交通事故 时空图卷积网络 时空相关性 批标准化层
下载PDF
基于时空图卷积网络的交通事故预测研究 被引量:6
17
作者 刘志 王锦梦 孔祥杰 《浙江工业大学学报》 CAS 北大核心 2022年第2期128-135,155,共9页
准确、高效的交通事故预测方法是智能交通系统高效运行、及时提供医疗救助和提高交通效率的必要条件。现有的事故预测模型主要采用统计方法或单一的机器学习方法,不能同时获得时空依赖关系,为了提高预测精度,针对交通事故预测的问题,提... 准确、高效的交通事故预测方法是智能交通系统高效运行、及时提供医疗救助和提高交通效率的必要条件。现有的事故预测模型主要采用统计方法或单一的机器学习方法,不能同时获得时空依赖关系,为了提高预测精度,针对交通事故预测的问题,提出了一种基于时空图卷积网络的交通事故预测模型,该模型与长短期记忆网络和图卷积网络相结合,并考虑了交通事故中时间和空间的依赖关系。通过将图卷积网络用于学习复杂的路网拓扑结构,以获得交通状态中的空间相关性,把长短期记忆网络用于学习交通事故数据的动态变化,以获得交通状态中的时间相关性,然后使用基于时空图卷积网络的交通事故预测模型进行预测。实验表明:该模型能够从事故数据中获得时空相关性,并在真实数据集上具有良好的预测性能。 展开更多
关键词 交通事故预测 路网拓扑结构 时空依赖 时空图卷积
下载PDF
基于潜在特征的时空图卷积网络轨迹预测方法
18
作者 姚宝珍 吴粤隆 +3 位作者 荆治家 陈思轩 仲潜 刘振国 《交通运输研究》 2023年第6期12-20,共9页
为提高车辆轨迹预测精度,提出一种基于潜在特征的时空图卷积网络轨迹预测方法CRSTGCN。首先,该方法特别添加了一个时间上更早、更长的历史轨迹作为输入,并基于该输入建立了潜在特征编码层。然后,CR-STGCN将该潜在特征编码层编码的潜在... 为提高车辆轨迹预测精度,提出一种基于潜在特征的时空图卷积网络轨迹预测方法CRSTGCN。首先,该方法特别添加了一个时间上更早、更长的历史轨迹作为输入,并基于该输入建立了潜在特征编码层。然后,CR-STGCN将该潜在特征编码层编码的潜在特征与时空图卷积编码的机动性与动力性特征拼接融合,并采用两层门控循环单元(Gate Recurrent Unit,GRU)解码出预测轨迹。最后,将采用时空图卷积编码和两层GRU解码的预测轨迹模型STGCN与CR-STGCN在NGSIM数据集上进行对比。结果表明,CR-STGCN在不同机动类型、交通密度场景下的预测精度均优于STGCN,证明了这一方法应用于车辆轨迹预测的有效性,为轨迹预测特征选取提供了新思路。 展开更多
关键词 智能交通 时空图卷积网络 轨迹预测 潜在特征 交通密度
下载PDF
基于时空图卷积网络的电力系统暂态稳定评估 被引量:23
19
作者 庄颖睿 肖谭南 +2 位作者 程林 陈颖 关慧哲 《电力系统自动化》 EI CSCD 北大核心 2022年第11期11-18,共8页
快速准确的电力系统暂态稳定分析对电力系统安全稳定运行有着重要意义。现代电力系统设备元件日趋复杂多样导致系统非线性日益增强,作为电力系统暂态稳定分析传统方法的时域仿真法过于耗时。针对此问题,提出了一种基于时空图卷积网络模... 快速准确的电力系统暂态稳定分析对电力系统安全稳定运行有着重要意义。现代电力系统设备元件日趋复杂多样导致系统非线性日益增强,作为电力系统暂态稳定分析传统方法的时域仿真法过于耗时。针对此问题,提出了一种基于时空图卷积网络模型的暂态稳定分析方法,将短时仿真与神经网络预测相结合,减少暂态稳定分析所需时间,可用于多种仿真分析场景。该方法将暂态稳定分析建模为样本空间映射问题,利用数据驱动方法训练神经网络模型,建立从暂态过程电网空间结构与时序潮流数据到暂态稳定的映射。模型通过同时提取暂态过程故障前、故障中、故障后的电网空间结构特征和时序潮流特征来实现对系统暂态稳定的快速准确判断。与传统暂态稳定分析方法相比,所提出的方法仅需进行短时间仿真分析,提高了分析效率。与其他机器学习模型相比,时空图卷积网络模型同时挖掘电力系统暂态过程的空间特征和时间特征,引入了更多与稳定性相关的先验知识,具有更优的特征挖掘能力和分析性能。基于新英格兰39节点系统的测试结果验证了所提方法的可行性、有效性和优越性。 展开更多
关键词 电力系统 暂态稳定分析 特征分析 数据驱动 神经网络 时空图卷积网络
下载PDF
基于时空图卷积网络改进的人体行为识别方法
20
作者 王松 《楚雄师范学院学报》 2022年第3期91-100,共10页
针对目前利用时空图卷积网络ST-GCN行为识别模型进行人体行为识别准确性有待提高和如何更好地学习骨骼数据中关节点和骨架边所表达的动作特征等问题,改进现有的时空图卷积网络(ST-GCN)行为识别模型。首先,使用有向图来表示关节点和骨骼... 针对目前利用时空图卷积网络ST-GCN行为识别模型进行人体行为识别准确性有待提高和如何更好地学习骨骼数据中关节点和骨架边所表达的动作特征等问题,改进现有的时空图卷积网络(ST-GCN)行为识别模型。首先,使用有向图来表示关节点和骨骼边的信息以及它们之间的依赖关系,提取相邻帧的关节位置差异作为运动信息;其次,使用双流框架分别学习运动信息和空间信息,进行融合提高识别性能;最后,使用注意力权重矩阵让图的拓扑结构具有自适应性,增大节点的感受野,使网络能够学习到远端关节之间的语义信息,更好的捕捉动作特征。将所提出的方法在NTURGB+D数据集上进行实验。研究结果表明,采用基于时空图卷积网络改进的人体行为识别方法在数据集上达到了96%的准确率,与现有ST-GCN模型相比,准确率提高了。此方法可进一步促进人体行为识别技术在智能家居、智能监控安防、人机交互、基于内容的视频检索、智慧城市发展等领域的广泛应用。 展开更多
关键词 人体行为识别 时空图卷积神经网络 有向图网络 注意力机制 双流框架
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部