期刊文献+
共找到1,194篇文章
< 1 2 60 >
每页显示 20 50 100
结合高斯噪声的回声状态网络模型及其时间序列预测性能
1
作者 王梓鉴 赵慧 +1 位作者 郑明文 李鑫 《济南大学学报(自然科学版)》 北大核心 2025年第1期129-134,142,共7页
为了模拟回声状态网络模型在时间序列预测实例中的影响因素,在回声状态网络模型的储备池层引入高斯噪声,构建结合高斯噪声的回声状态网络模型;利用公式推导分析所提模型的非线性性质;采用股票序列数据与Logistic混沌序列数据进行实验验... 为了模拟回声状态网络模型在时间序列预测实例中的影响因素,在回声状态网络模型的储备池层引入高斯噪声,构建结合高斯噪声的回声状态网络模型;利用公式推导分析所提模型的非线性性质;采用股票序列数据与Logistic混沌序列数据进行实验验证和对比分析。结果表明,本文所提模型的预测效果优于回声状态网络模型、压缩感知回声状态网络模型和反向传播神经网络模型,股票收盘价预测、Logistic混沌序列预测的平均绝对误差均最小,分别为1.33×10^(-3)、5.21×10^(-4)。 展开更多
关键词 时间序列预测 回声状态网络模型 高斯噪声 储备池层
下载PDF
基于“STL+ARIMA”模型的电力物资需求时间序列预测
2
作者 李英龙 林咪咪 +2 位作者 倪颖婷 姚可筠 李云峰 《互联网周刊》 2025年第2期33-35,共3页
随着电力行业的快速发展,物资需求的精确预测成为提高企业运营效率和降低成本的关键因素。本文基于国网福建省电力有限公司厦门供电公司2021年至2023年的部分物资出库数据,研究了多种时间序列预测模型对电力物资需求的预测能力。本文选... 随着电力行业的快速发展,物资需求的精确预测成为提高企业运营效率和降低成本的关键因素。本文基于国网福建省电力有限公司厦门供电公司2021年至2023年的部分物资出库数据,研究了多种时间序列预测模型对电力物资需求的预测能力。本文选取了ARIMA、SARIMA、LSTM、KNN、ETS、“STL+ARIMA”等6种模型,并通过MAE(平均绝对误差)、MSE(均方误差)、R-squared(决定系数)等多项评价指标对其预测精度进行了比较。实验结果表明,“STL+ARIMA”模型在所有模型中表现最佳,能够有效捕捉数据中的季节性波动和趋势变化,预测精度远超其他模型。本文为电力企业物资需求预测提供了高效且精确的模型选择方案,有助于优化物资供应链管理,降低成本,并提升整体运营效率。 展开更多
关键词 电力物资需求 时间序列预测 “STL+ARIMA”模型 SARIMA模型 LSTM神经网络
下载PDF
一种基于线性模糊信息粒的时间序列预测算法
3
作者 杨昔阳 陈豪 +2 位作者 李志伟 张新军 颜星华 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期188-198,共11页
[目的]由于经济、金融、环境和生态等多个领域中时间序列数据规模的持续增长,对其进行预测变得日益复杂,为了提高大规模时间序列的长期预测效率,探索构建模糊信息粒的创新方法,以准确反映数据集大小和趋势信息.[方法]首先,根据模糊拓展... [目的]由于经济、金融、环境和生态等多个领域中时间序列数据规模的持续增长,对其进行预测变得日益复杂,为了提高大规模时间序列的长期预测效率,探索构建模糊信息粒的创新方法,以准确反映数据集大小和趋势信息.[方法]首先,根据模糊拓展原理,研究各种模糊信息粒,包括区间型、三角型和高斯型模糊信息粒的距离定义.随后,结合时间序列片段的中心线段和离散程度信息,引入一类新颖的模糊信息粒.这些粒子可以有效捕捉指定时间范围内时间序列的趋势信息和离散程度,进一步地提出高斯型模糊信息粒距离的函数表达式和几何解释.为了将这些粒子用于时间序列预测,设计一类模糊推理预测系统,该系统可以利用历史数据构造模糊信息粒,并从高斯型模糊信息粒序列中提取模糊推理规则.[结果]高斯型模糊信息粒距离的函数表达式具有简洁的数学表示,可以合理地反映两个高斯模糊信息粒的中心线和离散程度的差异.模糊推理预测系统可以从高斯型模糊信息粒序列中提取有效的规则,实现时间序列的长期预测.实验结果表明,结合线性高斯模糊信息粒与模糊推理系统的预测方法在均方根误差和平均绝对百分比误差方面优于其他数值预测算法和其他模糊信息粒推理方法,包括自回归模型、自回归神经网络和回归向量机等.[结论]结合线性模糊信息粒和模糊推理系统的方法可以提高时间序列长期预测的效率.基于对数据集特征的合理抽象提出了一种新颖的线性模糊信息粒,并简洁地推导出了它们的距离定义.时间序列预测的成功表明,通过巧妙地设计信息粒,能够准确捕捉数据集中的关键特征,从而提高其他数据挖掘任务的效率,例如更快的计算速度和更准确的结果. 展开更多
关键词 线性模糊信息粒 模糊推理系统 时间序列预测
下载PDF
基于多尺度分段的长时间序列预测方法 被引量:1
4
作者 何胜林 龙琛 +6 位作者 郑静 王爽 文振焜 吴惠思 倪东 何小荣 吴雪清 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2024年第2期232-240,共9页
针对目前长时间序列预测(long sequence time-series forecasting,LSTF)存在历史数据量大、计算复杂度高、预测精度要求高等问题,提出一种基于多尺度分段的Transformer模型.该模型基于Transformer架构进行改进和优化,使用多尺度分段将... 针对目前长时间序列预测(long sequence time-series forecasting,LSTF)存在历史数据量大、计算复杂度高、预测精度要求高等问题,提出一种基于多尺度分段的Transformer模型.该模型基于Transformer架构进行改进和优化,使用多尺度分段将时间序列切片成多个时间段进行训练和预测,降低了长时间序列的复杂性,并实现了更高精度的预测.在电力变压器油温(electricity transformer temperature,ETT)数据集、用电负荷(electricity consumption load,ECL)数据集和天气(Weather)数据集中,分别采用传统Transfomer、Informer、门控循环单元(gated recurrent unit,GRU)、时序卷积网络(temporal convolutional network,TCN)和长短期记忆(long short-term memory,LSTM)5种基准模型与本研究提出的多尺度分段的Transformer模型,对长时间序列进行预测.结果表明,采用基于多尺度分段的Transformer模型在Weather数据集上对预测长度为192的时间序列预测的均方误差和平均绝对误差分别为0.367和0.407,均优于其他模型.基于多尺度分段的Transformer模型可以综合Transformer模型的优点,且计算速度更快,预测性能更高. 展开更多
关键词 计算机神经网络 时间序列预测 Transformer模型 多尺度分段 深度学习 电力预测
下载PDF
较短的长序列时间序列预测模型 被引量:1
5
作者 徐泽鑫 杨磊 李康顺 《计算机应用》 CSCD 北大核心 2024年第6期1824-1831,共8页
针对现有的研究大多将短序列时间序列预测和长序列时间序列预测分开研究而导致模型在较短的长序列时序预测时精度较低的问题,提出一种较短的长序列时间序列预测模型(SLTSFM)。首先,利用卷积神经网络(CNN)和PBUSM(Probsparse Based on Un... 针对现有的研究大多将短序列时间序列预测和长序列时间序列预测分开研究而导致模型在较短的长序列时序预测时精度较低的问题,提出一种较短的长序列时间序列预测模型(SLTSFM)。首先,利用卷积神经网络(CNN)和PBUSM(Probsparse Based on Uniform Selection Mechanism)自注意力机制搭建一个序列到序列(Seq2Seq)结构,用于提取长序列输入的特征;其次,设计“远轻近重”策略将多个短序列输入特征提取能力较强的长短时记忆(LSTM)模块提取的各时段数据特征进行重分配;最后,用重分配的特征增强提取的长序列输入特征,提高预测精度并实现时序预测。利用4个公开的时间序列数据集验证模型的有效性。实验结果表明,与综合表现次优的对比模型循环门单元(GRU)相比,SLTSFM的平均绝对误差(MAE)指标在4个数据集上的单变量时序预测分别减小了61.54%、13.48%、0.92%和19.58%,多变量时序预测分别减小了17.01%、18.13%、3.24%和6.73%。由此可见SLTSFM在提升较短的长序列时序预测精度方面的有效性。 展开更多
关键词 较短的长序列时间序列预测 序列序列 长短期记忆 自注意力机制 特征重分配
下载PDF
基于局部扰动的时间序列预测对抗攻击
6
作者 张耀元 原继东 +2 位作者 刘海洋 王志海 赵培翔 《软件学报》 EI CSCD 北大核心 2024年第11期5210-5227,共18页
时间序列预测模型已广泛应用于日常生活中的各个行业,针对这些预测模型的对抗攻击关系到各行业数据的安全性.目前,时间序列的对抗攻击多在全局范围内进行大规模扰动,导致对抗样本易被感知.同时,对抗攻击的效果会随着扰动幅度的降低而明... 时间序列预测模型已广泛应用于日常生活中的各个行业,针对这些预测模型的对抗攻击关系到各行业数据的安全性.目前,时间序列的对抗攻击多在全局范围内进行大规模扰动,导致对抗样本易被感知.同时,对抗攻击的效果会随着扰动幅度的降低而明显下降.因此,如何在生成不易察觉的对抗样本的同时保持较好的攻击效果,是当前时间序列预测对抗攻击领域亟需解决的问题之一.首先提出一种基于滑动窗口的局部扰动策略,缩小对抗样本的扰动区间;其次,使用差分进化算法寻找最优攻击点位,并结合分段函数分割扰动区间,进一步降低扰动范围,完成半白盒攻击.和已有的对抗攻击方法在多个不同深度模型上的对比实验表明,所提出的方法能够生成不易感知的对抗样本,并有效改变模型的预测趋势,在股票交易、电力消耗、太阳黑子观测和气温预测这4个具有挑战性的任务中均取得了较好的攻击效果. 展开更多
关键词 时间序列预测 对抗攻击 对抗样本 半白盒攻击 滑动窗口 差分进化
下载PDF
A^(2)former模型在时间序列预测中的应用研究
7
作者 胡倩伟 王秀青 +2 位作者 安阳 张诺飞 王广超 《人工智能科学与工程》 CAS 北大核心 2024年第1期41-50,共10页
时间序列预测在金融、医疗、交通和气象等领域发挥着重要作用。在长时间序列预测中,迫切需要提高预测的精度,解决内存不足等问题。近年来,Transformer模型在自然语言处理领域得以成功应用的同时,在预测研究领域也引起了学者们的广泛关注... 时间序列预测在金融、医疗、交通和气象等领域发挥着重要作用。在长时间序列预测中,迫切需要提高预测的精度,解决内存不足等问题。近年来,Transformer模型在自然语言处理领域得以成功应用的同时,在预测研究领域也引起了学者们的广泛关注,Transformer变体Informer模型的研究在时间序列预测中取得了较大进展。本研究以Informer框架为基础,与加性注意力机制相结合,提出了A^(2)former模型。利用A^(2)former模型在ETT,WTH,ECL和PM2.5数据集上进行了长时间序列预测的实验,实验结果表明所提模型在长时间序列预测中表现出比基线方法(如Informer模型和LSTMa模型)更好的性能。A^(2)former模型不仅将计算时间复杂度降低到线性,而且可以实现更有效的序列建模。本研究的工作为时间序列预测提供了有益参考。 展开更多
关键词 时间序列预测 加性注意力机制 Transformer模型 Informer模型 深度学习
下载PDF
量子自注意力神经网络的时间序列预测 被引量:2
8
作者 陈欣 李闯 金凡 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第1期110-118,共9页
在“量子-经典”混合模式下,设计了多头量子自注意力神经网络预测模型(MQSAPN)用以进行时间序列预测,模型包括多头量子自注意力模块以及变分量子线路预测模块两部分。通过对输入数据按时间步长分别进行量子态编码以及K、Q、V的计算,借... 在“量子-经典”混合模式下,设计了多头量子自注意力神经网络预测模型(MQSAPN)用以进行时间序列预测,模型包括多头量子自注意力模块以及变分量子线路预测模块两部分。通过对输入数据按时间步长分别进行量子态编码以及K、Q、V的计算,借鉴已有研究使用高斯函数进行自注意力系数的估计方式,将量子自注意力特征提取后的数据再次编码到变分预测线路中,经过线路演化及测量,最终获取预测结果。完整流程与模型搭建均采用VQNet框架实现。在天气学变量的时间序列预测任务中,该模型表现出与经典多头自注意力模型预测模型以及长短期记忆单元网络模型相当的预测精度。此外,相对于同样是量子机器学习的data-reuploading变分线路而言,在近乎同等规模线路深度与参数量的前提下,表现出更高的预测精度,这也进一步验证了引入量子自注意力机制的有效性。值得指出的是,作为预测部分的变分线路会随着输入数据量的增多(如时间窗加长、特征变量规模增加等),其参数量与线路深度也会显著增加,尽管多层QSA能够较好地进行特征表达,但依然有可能因遇到“贫瘠高原”困难而成为整个网络的瓶颈。 展开更多
关键词 量子计算 量子机器学习 自注意力机制 时间序列预测
下载PDF
基于LightGBM-Informer的盾构隧道管片上浮长时间序列预测模型
9
作者 真嘉捷 赖丰文 +2 位作者 黄明 李爽 许凯 《岩土力学》 EI CAS CSCD 北大核心 2024年第12期3791-3801,共11页
基于机器学习预测施工期盾构刀盘前方管片上浮值,有助于及时调整盾构控制参数以缓解管片上浮病害。然而,已有模型在长时间序列预测问题上的性能不佳,难以精确预测盾构刀盘前方多环管片上浮值。通过考虑盾构控制、姿态参数及地层信息的影... 基于机器学习预测施工期盾构刀盘前方管片上浮值,有助于及时调整盾构控制参数以缓解管片上浮病害。然而,已有模型在长时间序列预测问题上的性能不佳,难以精确预测盾构刀盘前方多环管片上浮值。通过考虑盾构控制、姿态参数及地层信息的影响,结合Boruta算法,确定模型输入特征;利用小波变换滤波器、完备自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)方法消除时间序列数据噪声,构建了一种基于LightBGM-Informer的盾构隧道施工期管片上浮预测模型。通过南京和厦门地区某地铁盾构隧道监测数据,验证了所提模型的准确性和适用性。结果表明,所提模型预测精度较循环神经网络(recurrent neural network,RNN)、长短时记忆网络(long short-term memory,LSTM)、门控循环单元(gated recurrent unit,GRU)、Transformer等模型有所提升,且在地质条件不同的数据集上具有良好的泛化性;随着预测序列长度的增加,该模型的性能优势更突出,可准确预测盾构刀盘前方1~2环未施工管片的上浮值。基于沙普利加和解释(Shapley additive explanations,SHAP)方法的特征重要性分析指出,土舱压力及盾头、盾尾垂直位移对管片上浮影响显著。所提模型可为复杂环境下富水地层盾构隧道管片施工智能化控制提供理论指导。 展开更多
关键词 盾构隧道 管片上浮 时间序列预测问题 Informer模型 SHAP方法
下载PDF
基于季节分解的混合神经网络的时间序列预测
10
作者 徐筠雯 陈宗镭 +1 位作者 李天瑞 李崇寿 《计算机科学》 CSCD 北大核心 2024年第S02期543-549,共7页
近年来,时间序列预测已经在金融、气象、军事等多个领域得到广泛应用。深度学习已开始在时间序列预测任务中展现巨大的潜力和应用前景。其中,循环神经网络在跨度较大的时间序列预测中容易出现信息丢失和梯度爆炸等问题。而Transformer... 近年来,时间序列预测已经在金融、气象、军事等多个领域得到广泛应用。深度学习已开始在时间序列预测任务中展现巨大的潜力和应用前景。其中,循环神经网络在跨度较大的时间序列预测中容易出现信息丢失和梯度爆炸等问题。而Transformer模型及其变种在使用注意力机制时通常忽略了时间序列变量之间的时序关系。为了应对这些问题,提出了一种基于季节分解的混合神经网络时间序列预测模型。该模型利用季节分解模块来捕获时间序列中不同周期频率分量的变化,同时通过融合多头注意力机制和复合扩张卷积层,利用全局信息和局部信息的交互获取数据之间的多尺度时序位置信息。最终,在4个领域的公开数据集上进行了实验,结果表明模型的预测性能优于当前的主流方法。 展开更多
关键词 时间序列预测 季节分解 注意力机制 扩张卷积 混合模型
下载PDF
基于多尺度门控膨胀卷积网络的时间序列预测算法 被引量:1
11
作者 曾渝 张洋 +3 位作者 曾尚 付茂栗 何启学 曾林隆 《计算机应用》 CSCD 北大核心 2024年第11期3427-3434,共8页
针对当前时间序列预测任务存在的高维特征、大规模数据以及对预测准确性高要求等问题,提出一种基于多尺度趋势-周期分解的多头门控膨胀卷积网络模型。该模型采用多尺度分解方法,将原始协变量序列和预测变量序列分解为各自的周期项和趋势... 针对当前时间序列预测任务存在的高维特征、大规模数据以及对预测准确性高要求等问题,提出一种基于多尺度趋势-周期分解的多头门控膨胀卷积网络模型。该模型采用多尺度分解方法,将原始协变量序列和预测变量序列分解为各自的周期项和趋势项,从而实现独立的预测。对于周期项,引入多头门控膨胀卷积网络的编码器,以提取各自的周期信息;在解码器阶段,使用交叉注意力机制进行通道信息的交互融合,并将预测变量的周期信息采样对齐后通过时间注意力与通道融合信息进行周期预测。对趋势项则采用自回归方式进行趋势预测。最后将趋势预测与周期预测的结果相加得到预测序列。与长短期记忆(LSTM)、Informer等多个主流基准模型进行比较,所提模型在ETTm1、ETTh1等5个数据集上的均方误差(MSE)平均下降了19.2%~52.8%,平均绝对误差(MAE)平均下降了12.1%~33.8%。通过消融实验验证了所提出的多尺度分解模块、多头门控膨胀卷积以及时间注意力模块能提升时序预测的准确度。 展开更多
关键词 时间序列预测 序列分解 膨胀卷积 编码器 解码器 注意力机制
下载PDF
基于DFT的频率敏感双分支Transformer多变量长时间序列预测方法
12
作者 任烈弘 黄铝文 +1 位作者 田旭 段飞 《计算机应用》 CSCD 北大核心 2024年第9期2739-2746,共8页
在进行多变量长时间序列预测时,仅利用时域分析通常无法充分捕捉长时间序列依赖,而这会导致信息利用率不足、预测精度不够高。因此,结合频域时域分析,提出一种基于离散傅里叶变换(DFT)的频率敏感双分支多变量长时间序列预测(FSDformer)... 在进行多变量长时间序列预测时,仅利用时域分析通常无法充分捕捉长时间序列依赖,而这会导致信息利用率不足、预测精度不够高。因此,结合频域时域分析,提出一种基于离散傅里叶变换(DFT)的频率敏感双分支多变量长时间序列预测(FSDformer)方法。首先,通过DFT实现时间和频率的相互转换,从而将复杂的时间序列数据分解为结构简单的低频趋势项、中频季节项和高频余项3个分量;其次,采用双分支结构,针对中高频分量预测,应用Encoder-Decoder结构,设计了周期性增强注意力机制;针对低频趋势分量预测,采用多层感知机(MLP)结构;最后将中高频分量与低频分量预测结果相加,得到多变量长时间序列的最终预测结果。在2个数据集上把FSDformer与其他5个经典算法进行了对比分析,在Electricity数据集上,当历史序列长度为96,预测序列长度为336时,相较于Autoformer等对比算法,FSDformer的平均绝对误差(MAE)下降了11.5%~29.1%,均方误差(MSE)下降了20.9%~43.7%,达到了最优预测精度。实验结果表明,FSDformer能有效捕捉长时间序列的相关依赖,在提升预测精度和计算效率的同时,增强了模型预测的稳定性。 展开更多
关键词 离散傅里叶变换 频率敏感 时间序列预测 序列分解 TRANSFORMER 周期性增强注意力
下载PDF
融合趋势嵌入和粒度增强网络的小样本医学时间序列预测
13
作者 于敬楠 张春霞 +2 位作者 薛新月 薛晓军 牛振东 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第6期948-959,共12页
随着大数据分析和深度学习的迅猛发展,时间序列预测方法被广泛应用于医学、金融、气象和交通等领域,为众多应用任务提供决策支持.针对小样本医学数据特征维度低和现有深度学习方法易于造成过拟合问题,研究小样本医学时间序列预测任务,... 随着大数据分析和深度学习的迅猛发展,时间序列预测方法被广泛应用于医学、金融、气象和交通等领域,为众多应用任务提供决策支持.针对小样本医学数据特征维度低和现有深度学习方法易于造成过拟合问题,研究小样本医学时间序列预测任务,提出融合趋势嵌入和粒度增强网络的预测方法.首先在卷积神经网络的框架下,粒度增强网络分别从时间维度和特征维度将医学时间序列数据提升为三维张量;然后以医学时间序列样本的一阶差分作为方向向量,基于方向导数生成趋势嵌入表征;再构建静态空间邻接矩阵和动态时间邻接矩阵,并通过时空图卷积网络学习时空嵌入表征;最后将构建的时空嵌入、预测嵌入和趋势嵌入整合到基于图卷积网络、门控循环单元和残差网络的网络架构之中,实现医学时间序列预测.在Cancer,ILI,Baries和COVID-19这4个数据集上的实验结果表明,与预测结果最佳的基线模型T-GCN相比,所提方法在每个数据集的MAE,MAPE和RMSE这3个评价指标上分别降低34.0607,0.0107,70.6728;11.1808,0.0950,20.7285;0.3546,0.1127,0.4553和449.2437,0.0144,1174.7273,其性能优于基线方法,验证了该方法的可行性及有效性. 展开更多
关键词 时间序列预测 趋势嵌入 粒度增强网络 时空图卷积网络
下载PDF
基于iTransformer模型的金融时间序列预测
14
作者 王钰涵 梁志勇 《产业创新研究》 2024年第15期122-124,共3页
金融时间序列的准确预测是经济政策制定者和投资者密切关注的焦点。本文选用工商银行作为金融时间序列的代表,用一种新颖的神经网络模型iTransformer对工商银行的股票价格进行预测。同时,将统计模型ARIMA、神经网络模型LSTM和Transforme... 金融时间序列的准确预测是经济政策制定者和投资者密切关注的焦点。本文选用工商银行作为金融时间序列的代表,用一种新颖的神经网络模型iTransformer对工商银行的股票价格进行预测。同时,将统计模型ARIMA、神经网络模型LSTM和Transformer作为对照组,比较了不同模型在不同时间范围内预测的准确性。实证结果显示,iTransformer确实适用于股票价格的预测,在短期、中期和长期这三种不同的预测区间内,其精度普遍优于对照组的预测模型。 展开更多
关键词 金融时间序列预测 iTransformer LSTM TRANSFORMER ARIMA
下载PDF
基于渐进式分解架构的风电时间序列预测
15
作者 丁浩 周成杰 +2 位作者 车超 赵天明 周守亮 《计算机系统应用》 2024年第7期112-120,共9页
准确预测风电机组各项指标对准确管控机组和调控电网的供需有着重要意义.预测指标任务可抽象为风电时间序列预测任务.目前时间序列预测模型主要采用深度学习模型,但是风电时间序列具有较强的波动性和随机性,导致绝大部分模型不能较好挖... 准确预测风电机组各项指标对准确管控机组和调控电网的供需有着重要意义.预测指标任务可抽象为风电时间序列预测任务.目前时间序列预测模型主要采用深度学习模型,但是风电时间序列具有较强的波动性和随机性,导致绝大部分模型不能较好挖掘风电时间序列的复杂演化特性.为解决上述问题,提出了一种基于渐进式分解架构的风电时间序列预测方法,该方法首先应用神经网络池化分解方法将复杂的依赖关系简化并应用注意力机制学习长期趋势,然后运用多变量融合捕捉模块增强了网络整体的多变量关联挖掘能力,最后,融合趋势项和周期项对风电时间序列做出准确的预测.实验结果表明,该方法在风电时间序列的多步预测中均方误差相比基线模型至高可提升24%,在多尺度预测长度下表现出预测性能稳定提升的同时,计算效率显著优于同类模型. 展开更多
关键词 多变量时间序列预测 神经网络 attention机制 时间序列分解
下载PDF
基于分解和频域特征提取的多变量长时间序列预测模型
16
作者 范艺扬 张洋 +2 位作者 曾尚 曾渝 付茂栗 《计算机应用》 CSCD 北大核心 2024年第11期3442-3448,共7页
针对现有基于Transformer的多变量长时间序列预测(MLTSF)模型主要从时域中提取特征,难以直接从长时间序列分散的时间点中找出可靠依赖关系的问题,提出一种新的基于分解和频域特征提取的模型。首先,提出基于频域的周期项-趋势项的分解方... 针对现有基于Transformer的多变量长时间序列预测(MLTSF)模型主要从时域中提取特征,难以直接从长时间序列分散的时间点中找出可靠依赖关系的问题,提出一种新的基于分解和频域特征提取的模型。首先,提出基于频域的周期项-趋势项的分解方法,以降低分解过程的时间复杂度;其次,在利用周期项-趋势项分解提取序列趋势性特征的基础上,利用基于Gabor变换进行频域特征提取的Transformer网络捕捉周期性的依赖,提高预测的稳定性和鲁棒性。在5个基准数据集上的实验结果显示,与现有的先进方法相比,所提模型在MLTSF上的均方误差(MSE)平均减小了7.6%,最多减小了18.9%,有效提升了预测精度。 展开更多
关键词 多变量长时间序列预测 频域特征提取 GABOR变换 TRANSFORMER 时间序列 深度学习
下载PDF
基于时间序列预测的停车泊位调度算法
17
作者 宗学森 董晓飞 +2 位作者 李鹏 熊晓芸 王金龙 《计算机应用与软件》 北大核心 2024年第9期294-303,共10页
针对现有停车方法存在停车冲突和停车泊位利用率低问题,提出一种基于时间序列预测的停车泊位调度算法。算法利用Holt-Winters模型预测月租车辆在下一时段的停车流量;采用两种停车泊位调度策略,即月租服务优先策略和动态分配策略,在保证... 针对现有停车方法存在停车冲突和停车泊位利用率低问题,提出一种基于时间序列预测的停车泊位调度算法。算法利用Holt-Winters模型预测月租车辆在下一时段的停车流量;采用两种停车泊位调度策略,即月租服务优先策略和动态分配策略,在保证月租车辆的停车服务质量的前提下,动态规划可用停车泊位的泊位类型。实验结果表明,在不同数量的停车泊位和月租用户条件下,采用该方法比现有停车方法具有更高的累积利用率,可以有效提高写字楼停车场的利用率。 展开更多
关键词 时间序列预测 Holt-Winters 停车流量预测 停车泊位调度
下载PDF
时间序列预测模型发展趋势分析
18
作者 王瑞芳 马平安 俞婷 《科技资讯》 2024年第19期73-78,共6页
时间序列预测是当前研究的主要方向之一,能有效解决工业、交通等领域的工艺指标和客流量预测问题。通过分析现有的时间序列模型,可以预测未来的发展趋势。首先,分析现有时间序列预测模型的结构,以了解其技术实现方式;其次,根据技术手段... 时间序列预测是当前研究的主要方向之一,能有效解决工业、交通等领域的工艺指标和客流量预测问题。通过分析现有的时间序列模型,可以预测未来的发展趋势。首先,分析现有时间序列预测模型的结构,以了解其技术实现方式;其次,根据技术手段的不同,将模型分为优化提升类和创新类;最后,讨论了时间序列预测模型的未来发展趋势。 展开更多
关键词 时间序列 优化提升 神经网络 时间序列预测模型
下载PDF
基于集群分析和时间序列预测的电网极端自然灾害预警机制优化
19
作者 方圆圻 尹凡 +1 位作者 葛乃成 侯四维 《电气自动化》 2024年第6期79-81,85,共4页
提出基于集群分析和时间序列预测的电网极端自然灾害预警机制优化方法,预警电网极端自然灾害,降低极端自然灾害对电网影响。依据电网与极端自然灾害间存在的耦合关系,搭建电网极端自然灾害预警机制框架。将多角度处理后的气象观测站定... 提出基于集群分析和时间序列预测的电网极端自然灾害预警机制优化方法,预警电网极端自然灾害,降低极端自然灾害对电网影响。依据电网与极端自然灾害间存在的耦合关系,搭建电网极端自然灾害预警机制框架。将多角度处理后的气象观测站定时观测数据集,当作电网极端自然灾害预警工作的原始样本数据集;而后使用随机森林算法,确定与电网极端自然灾害高相关气象元素,形成全新样本数据集,作为改进长短期记忆网络有效输入;经多次有效学习,预测电网所在区域可能出现的极端自然灾害,并根据预测结果发出相应预警。试验结果表明:所提方法在电网极端自然灾害预警工作中,具有较强的实用性,可有效预警电网极端自然灾害,确保电网安全运行,使其免受极端自然灾害破坏。 展开更多
关键词 集群分析 时间序列预测 极端自然灾害 预警机制 电力网络 数据准备
下载PDF
基于贝叶斯推断的层次化时间序列预测
20
作者 李耀康 谌颃 《信息记录材料》 2024年第10期109-111,共3页
层次化时间序列预测在当今社会起着重要的作用,但由于其本身的复杂性导致这项研究的挑战性较大。本研究聚焦于将贝叶斯推断应用于自回归移动平均(autoregressive integrated moving average,ARIMA)模型与3种池化模型(完全池化、无池化... 层次化时间序列预测在当今社会起着重要的作用,但由于其本身的复杂性导致这项研究的挑战性较大。本研究聚焦于将贝叶斯推断应用于自回归移动平均(autoregressive integrated moving average,ARIMA)模型与3种池化模型(完全池化、无池化、部分池化)的组合,来优化多层次时间序列预测,并利用合成数据集验证层次结构对预测准确性的提升效果。本研究对项目相关理论知识做了介绍,分析了项目模型的实现方法。实验结果表明:部分池化模型表现最优,且短期数据集的预测效果更佳。证实了层次结构能增强预测准确性,且对短期时间序列效果尤为显著。本研究丰富了ARIMA与池化模型组合的研究,为时间序列预测提供了新视角和方法论支持。 展开更多
关键词 多层次时间序列预测 贝叶斯推断 部分池化
下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部