滑坡易发性评价是滑坡灾害防治的重要手段之一,而不合理的滑坡负样本会影响滑坡易发性评价,从而影响到滑坡灾害的防治,因此提供一种合理的负样本选取方法变得尤为关键。以西藏米林市的古滑坡为例,选择高程、坡度、坡向、坡位、距道路距...滑坡易发性评价是滑坡灾害防治的重要手段之一,而不合理的滑坡负样本会影响滑坡易发性评价,从而影响到滑坡灾害的防治,因此提供一种合理的负样本选取方法变得尤为关键。以西藏米林市的古滑坡为例,选择高程、坡度、坡向、坡位、距道路距离、距断层距离、距水系距离、地形起伏度、地层岩性、土地利用类型10类环境因子,使用Relief算法计算环境因子的贡献值并依据贡献值优化选择环境因子;基于环境因子优化的目标空间外向化采样法(target space exteriorization sampling,简称TSES)选择负样本,作为性能优异的随机森林模型的输入变量;之后结合优化的环境因子和正或负样本预测米林市的滑坡易发性,并用混淆矩阵和ROC曲线评价构建模型的性能。为检验环境因子优化的TSES法的有效性和先进性,采用耦合信息量法和TSES法选择滑坡负样本并构建随机森林模型,与环境因子优化的TSES法构建的随机森林模型进行对比研究。结果表明,环境因子优化的TSES法构建的随机森林模型的评价效果较好,其ACC为93.7%、AUC为0.987,均高于耦合信息量、TSES法构成的模型。环境因子优化的TSES法能够提高模型的精度,解决多因子作为约束条件取样中因子选取的问题,为滑坡易发性评价采集负样本提供了新的思路。展开更多
针对地质灾害易发性评价因子分级数不确定的问题,引入自适应膨胀因子模糊覆盖分级方法(fuzzy cover approach for clustering based on adaptive inflation factor,AIFFC)对易发性评价因子分级进行优化。以湖南省湘乡市为研究区,提取了...针对地质灾害易发性评价因子分级数不确定的问题,引入自适应膨胀因子模糊覆盖分级方法(fuzzy cover approach for clustering based on adaptive inflation factor,AIFFC)对易发性评价因子分级进行优化。以湖南省湘乡市为研究区,提取了坡度、坡向、高程、年平均降雨量、归一化植被指数、道路、断层、岩性和土地利用9类评价因子,运用AIFFC及自然断点法(natural breakpoint classification,NBC)对连续型因子进行分级,并分别代入加权信息量模型和随机森林模型,获取研究区易发性区划图。采用单因子分级结果精度、灾积比分析和易发性分区结果对AIFFC分级法的优越性进行检验,结果表明:各因子采用AIFFC算法分级的AUC值均高于自然断点法;基于AIFFC的随机森林模型及加权信息量模型的高易发区灾积比分别提升了56.3%、74.6%,低易发区灾积比分别降低了48%、58.1%,AUC值分别提升了7.6%、2.7%。采用AIFFC分级方法优化了地质灾害易发性评价因子分级,显著提高了地质灾害易发性评价的合理性。展开更多
探究不同栅格分辨率下崩岗易发性评价对崩岗防控具有重要意义.为开展相关研究,以赣州市石城县为例,利用地理探测器选取降雨侵蚀力、可蚀性、岩石种类、植被高度、叶面积指数、高程、坡度、归一化植被指数指标作为评价指标,划分出15、30...探究不同栅格分辨率下崩岗易发性评价对崩岗防控具有重要意义.为开展相关研究,以赣州市石城县为例,利用地理探测器选取降雨侵蚀力、可蚀性、岩石种类、植被高度、叶面积指数、高程、坡度、归一化植被指数指标作为评价指标,划分出15、30、60、90、120 m 5种分辨率的栅格单元,以频率比(FR)为联接方法,构建频率比-随机森林(FR-RF)模型开展崩岗易发性评价.结果显示:栅格单元空间分辨率对崩岗易发性评价有一定影响,5种不同栅格分辨率下易发性结果的AUC值依次为0.840、0.830、0.830、0.820、0.810,基于随机森林模型下15 m分辨率栅格单元更适用于研究区的崩岗易发性评价(AUC值为0.840);研究区较高易发区以及高易发区主要分布在北部区域.研究结果可以为赣南地区的崩岗易发性评价提供重要参考.展开更多
滑坡易发性评价的实质就是以历史滑坡数据为基础,进行特定区域滑坡灾害发生的概率评估。易发性评价结果多数取决于样本的精细程度。传统的样本制作方法会丢失滑坡的部分位置信息,为最终评价结果带来不确定性。本研究提出了一种全新的网...滑坡易发性评价的实质就是以历史滑坡数据为基础,进行特定区域滑坡灾害发生的概率评估。易发性评价结果多数取决于样本的精细程度。传统的样本制作方法会丢失滑坡的部分位置信息,为最终评价结果带来不确定性。本研究提出了一种全新的网格样本制作方法,尽可能完整地保留滑坡的边界位置信息。将不同的机器学习模型(逻辑回归模型、深度神经网络)与本文提出的样本制作方法结合,并通过受试者工作特征(receiver operating characteristic,ROC)曲线实现精度验证。ROC曲线中2个模型的AUC(area under curve)值分别为0.878,0.963。最终的易发性分区结果显示:深度神经网络在对于极高滑坡易发区的划分更为精细,便于节约人力、物力资源,集中关注于滑坡真正高发的那些区域。展开更多
文摘滑坡易发性评价是滑坡灾害防治的重要手段之一,而不合理的滑坡负样本会影响滑坡易发性评价,从而影响到滑坡灾害的防治,因此提供一种合理的负样本选取方法变得尤为关键。以西藏米林市的古滑坡为例,选择高程、坡度、坡向、坡位、距道路距离、距断层距离、距水系距离、地形起伏度、地层岩性、土地利用类型10类环境因子,使用Relief算法计算环境因子的贡献值并依据贡献值优化选择环境因子;基于环境因子优化的目标空间外向化采样法(target space exteriorization sampling,简称TSES)选择负样本,作为性能优异的随机森林模型的输入变量;之后结合优化的环境因子和正或负样本预测米林市的滑坡易发性,并用混淆矩阵和ROC曲线评价构建模型的性能。为检验环境因子优化的TSES法的有效性和先进性,采用耦合信息量法和TSES法选择滑坡负样本并构建随机森林模型,与环境因子优化的TSES法构建的随机森林模型进行对比研究。结果表明,环境因子优化的TSES法构建的随机森林模型的评价效果较好,其ACC为93.7%、AUC为0.987,均高于耦合信息量、TSES法构成的模型。环境因子优化的TSES法能够提高模型的精度,解决多因子作为约束条件取样中因子选取的问题,为滑坡易发性评价采集负样本提供了新的思路。
文摘针对地质灾害易发性评价因子分级数不确定的问题,引入自适应膨胀因子模糊覆盖分级方法(fuzzy cover approach for clustering based on adaptive inflation factor,AIFFC)对易发性评价因子分级进行优化。以湖南省湘乡市为研究区,提取了坡度、坡向、高程、年平均降雨量、归一化植被指数、道路、断层、岩性和土地利用9类评价因子,运用AIFFC及自然断点法(natural breakpoint classification,NBC)对连续型因子进行分级,并分别代入加权信息量模型和随机森林模型,获取研究区易发性区划图。采用单因子分级结果精度、灾积比分析和易发性分区结果对AIFFC分级法的优越性进行检验,结果表明:各因子采用AIFFC算法分级的AUC值均高于自然断点法;基于AIFFC的随机森林模型及加权信息量模型的高易发区灾积比分别提升了56.3%、74.6%,低易发区灾积比分别降低了48%、58.1%,AUC值分别提升了7.6%、2.7%。采用AIFFC分级方法优化了地质灾害易发性评价因子分级,显著提高了地质灾害易发性评价的合理性。
文摘探究不同栅格分辨率下崩岗易发性评价对崩岗防控具有重要意义.为开展相关研究,以赣州市石城县为例,利用地理探测器选取降雨侵蚀力、可蚀性、岩石种类、植被高度、叶面积指数、高程、坡度、归一化植被指数指标作为评价指标,划分出15、30、60、90、120 m 5种分辨率的栅格单元,以频率比(FR)为联接方法,构建频率比-随机森林(FR-RF)模型开展崩岗易发性评价.结果显示:栅格单元空间分辨率对崩岗易发性评价有一定影响,5种不同栅格分辨率下易发性结果的AUC值依次为0.840、0.830、0.830、0.820、0.810,基于随机森林模型下15 m分辨率栅格单元更适用于研究区的崩岗易发性评价(AUC值为0.840);研究区较高易发区以及高易发区主要分布在北部区域.研究结果可以为赣南地区的崩岗易发性评价提供重要参考.
文摘滑坡易发性评价的实质就是以历史滑坡数据为基础,进行特定区域滑坡灾害发生的概率评估。易发性评价结果多数取决于样本的精细程度。传统的样本制作方法会丢失滑坡的部分位置信息,为最终评价结果带来不确定性。本研究提出了一种全新的网格样本制作方法,尽可能完整地保留滑坡的边界位置信息。将不同的机器学习模型(逻辑回归模型、深度神经网络)与本文提出的样本制作方法结合,并通过受试者工作特征(receiver operating characteristic,ROC)曲线实现精度验证。ROC曲线中2个模型的AUC(area under curve)值分别为0.878,0.963。最终的易发性分区结果显示:深度神经网络在对于极高滑坡易发区的划分更为精细,便于节约人力、物力资源,集中关注于滑坡真正高发的那些区域。