新能源并网变换器在电网短路故障期间与电网之间的交互作用显著增强,增加了暂态失稳风险。该文首先建立可再生能源并网换流器(renewable energy grid-connected converter,REGC)在低电压穿越(low-voltageride-through,LVRT)期间的简化...新能源并网变换器在电网短路故障期间与电网之间的交互作用显著增强,增加了暂态失稳风险。该文首先建立可再生能源并网换流器(renewable energy grid-connected converter,REGC)在低电压穿越(low-voltageride-through,LVRT)期间的简化等效转子摇摆方程,刻画并分析其同步特征属性。然后,借鉴传统同步发电机的同步稳定理论,推导等效整步转矩系数、等效等面积准则以及阻尼比3个同步特征指数,物理性地揭示不平衡虚拟转矩驱动REGC等效功角运动,甚至引发暂态失步的内在机理,并同时量化衡量REGC的暂态同步稳定性及其在低电压穿越期间的准静态小干扰同步稳定性。最后,提出一种基于自动虚拟变阻器的改进锁相环(phase-lockedloop,PLL)架构,使REGC能够自适应地抵消/补偿线路电阻的压降效应,不仅具备自主平衡能力,而且同时显著增强REGC的暂态同步稳定性及其准静态小干扰同步稳定性。仿真和实验结果验证了理论分析的正确性和所提控制策略的有效性。展开更多
针对弱连接条件下锁相环同步电压源变流器WG-VSC(weak grid connected voltage source converter)系统的暂态同步稳定问题,首先建立了适用于分析WG-VSC系统在严重电网故障期间的锁相环同步暂态稳定问题的等效转子摇摆方程模型。然后利...针对弱连接条件下锁相环同步电压源变流器WG-VSC(weak grid connected voltage source converter)系统的暂态同步稳定问题,首先建立了适用于分析WG-VSC系统在严重电网故障期间的锁相环同步暂态稳定问题的等效转子摇摆方程模型。然后利用改进的等面积定则I-EAC(improved equal area criterion)揭示了弱连接条件下VSC并网系统在严重电网故障下的暂态同步失稳机理;在此基础上,给出了系统在严重电网故障等大扰动下的保证系统暂态稳定的注入电流暂态稳定域的解析边界,为故障期间注入电流策略的制定提供了理论依据。最后,在PSCAD/EMTDC搭建了WG-VSC系统的详细开关模型,仿真结果验证了等效转子摇摆方程模型以及注入电流稳定域的有效性。展开更多
The impact of large-scale grid-connected PV (photovoltaics) on power system transient stability is discussed in this paper. In response to an increase of PV capacity, the capacity of conventional synchronous generat...The impact of large-scale grid-connected PV (photovoltaics) on power system transient stability is discussed in this paper. In response to an increase of PV capacity, the capacity of conventional synchronous generator needs to be reduced relatively. This leads to the lower system inertia and the higher generator reactance, and hence, the power system transient stability may negatively be affected. In particular, the impact on the transient stability may become more serious when the considerable amounts of PV systems are disconnected simultaneously during voltage sag. In this work, the potential impact of significant PV penetration on the transient stability is assessed by a numerical simulation using PSCAD/EMTDC.展开更多
In the previous paper [1], the transient stability of synchronous generator in power system with high-penetration PV (photovoltaic) was assessed by simulation analysis of a single-machine infinite-bus system model. ...In the previous paper [1], the transient stability of synchronous generator in power system with high-penetration PV (photovoltaic) was assessed by simulation analysis of a single-machine infinite-bus system model. Through the simulation analysis, we have obtained some conclusions in terms of the impact of high-penetration PV on the stability. However, for more accurate assessment of the transient stability, it is necessary to analyze various simulation models considering many other power system conditions. This paper presents the results of the analysis for the transient stability simulation performed for IEEE 9-bus system model, in which the effects of various conditions, such as variety of power sources (inverter or rotational machine), load characteristics, existence of LVRT (low-voltage ride-through) capability and fault locations, on the transient stability are investigated.展开更多
文摘新能源并网变换器在电网短路故障期间与电网之间的交互作用显著增强,增加了暂态失稳风险。该文首先建立可再生能源并网换流器(renewable energy grid-connected converter,REGC)在低电压穿越(low-voltageride-through,LVRT)期间的简化等效转子摇摆方程,刻画并分析其同步特征属性。然后,借鉴传统同步发电机的同步稳定理论,推导等效整步转矩系数、等效等面积准则以及阻尼比3个同步特征指数,物理性地揭示不平衡虚拟转矩驱动REGC等效功角运动,甚至引发暂态失步的内在机理,并同时量化衡量REGC的暂态同步稳定性及其在低电压穿越期间的准静态小干扰同步稳定性。最后,提出一种基于自动虚拟变阻器的改进锁相环(phase-lockedloop,PLL)架构,使REGC能够自适应地抵消/补偿线路电阻的压降效应,不仅具备自主平衡能力,而且同时显著增强REGC的暂态同步稳定性及其准静态小干扰同步稳定性。仿真和实验结果验证了理论分析的正确性和所提控制策略的有效性。
文摘针对弱连接条件下锁相环同步电压源变流器WG-VSC(weak grid connected voltage source converter)系统的暂态同步稳定问题,首先建立了适用于分析WG-VSC系统在严重电网故障期间的锁相环同步暂态稳定问题的等效转子摇摆方程模型。然后利用改进的等面积定则I-EAC(improved equal area criterion)揭示了弱连接条件下VSC并网系统在严重电网故障下的暂态同步失稳机理;在此基础上,给出了系统在严重电网故障等大扰动下的保证系统暂态稳定的注入电流暂态稳定域的解析边界,为故障期间注入电流策略的制定提供了理论依据。最后,在PSCAD/EMTDC搭建了WG-VSC系统的详细开关模型,仿真结果验证了等效转子摇摆方程模型以及注入电流稳定域的有效性。
文摘The impact of large-scale grid-connected PV (photovoltaics) on power system transient stability is discussed in this paper. In response to an increase of PV capacity, the capacity of conventional synchronous generator needs to be reduced relatively. This leads to the lower system inertia and the higher generator reactance, and hence, the power system transient stability may negatively be affected. In particular, the impact on the transient stability may become more serious when the considerable amounts of PV systems are disconnected simultaneously during voltage sag. In this work, the potential impact of significant PV penetration on the transient stability is assessed by a numerical simulation using PSCAD/EMTDC.
文摘In the previous paper [1], the transient stability of synchronous generator in power system with high-penetration PV (photovoltaic) was assessed by simulation analysis of a single-machine infinite-bus system model. Through the simulation analysis, we have obtained some conclusions in terms of the impact of high-penetration PV on the stability. However, for more accurate assessment of the transient stability, it is necessary to analyze various simulation models considering many other power system conditions. This paper presents the results of the analysis for the transient stability simulation performed for IEEE 9-bus system model, in which the effects of various conditions, such as variety of power sources (inverter or rotational machine), load characteristics, existence of LVRT (low-voltage ride-through) capability and fault locations, on the transient stability are investigated.