期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于CBAM-CNN的电力系统暂态电压稳定评估
1
作者 李欣 柳圣池 +3 位作者 李新宇 陈德秋 鲁玲 郭攀锋 《电力系统及其自动化学报》 CSCD 北大核心 2024年第4期59-67,75,共10页
为进一步提高电力系统暂态电压稳定评估模型的特征提取能力和模型在系统拓扑结构发生变化时的适应性,提出一种将改进的卷积神经网络与迁移学习相结合的方法。首先,在卷积神经网络的卷积层后插入卷积块注意力模块,对输入的数据从通道和... 为进一步提高电力系统暂态电压稳定评估模型的特征提取能力和模型在系统拓扑结构发生变化时的适应性,提出一种将改进的卷积神经网络与迁移学习相结合的方法。首先,在卷积神经网络的卷积层后插入卷积块注意力模块,对输入的数据从通道和空间两个独立的维度依次提取特征,提高卷积神经网络对系统暂态电压状态的识别能力。然后,将该模块与微调技术相结合,提高模型在系统拓扑结构改变时的在线更新速度。最后,算例分析验证了所提模型的有效性。 展开更多
关键词 深度学习 卷积神经网络 暂态电压稳定评估 卷积块注意力模块 迁移学习
下载PDF
电力系统暂态电压稳定评估的混合智能特征双重筛选方法
2
作者 王渝红 朱玲俐 +3 位作者 赏成波 李晨鑫 杜婷 郑宗生 《电网技术》 EI CSCD 北大核心 2024年第4期1532-1542,I0044,I0046,I0047,共14页
含高比例新能源与直流接入的电力系统暂态电压稳定特征呈高维冗余性,影响基于数据驱动评估模型的效率和性能。为此,在构建一组适应含高比例新能源和直流接入场景的完备特征集合基础上,提出一种基于改进Relief算法和改进群智能优化算法... 含高比例新能源与直流接入的电力系统暂态电压稳定特征呈高维冗余性,影响基于数据驱动评估模型的效率和性能。为此,在构建一组适应含高比例新能源和直流接入场景的完备特征集合基础上,提出一种基于改进Relief算法和改进群智能优化算法双重筛选的混合智能特征选择方法,以降低原始特征维度,提高模型稳定评估的效率和准确率。首先,通过时序分层处理对原始Relief算法进行时序改进,并利用该改进算法进行特征的有效性度量,以消除分类低效特征,得到降维后的初筛特征子集;随后,融合特征有效性度量值对群智能优化算法进行搜索性能增强。再以此增强算法为寻优策略,并以时序分类模型卷积门控循环单元(convolution gated recurrent unit,ConvGRU)为分类器,构成基于群智能优化算法的封装式特征选择方案,进一步实现特征子集寻优。最后,通过算例对比分析,该方法下高维特征维度能压缩80%以上,且所选特征子集能有效提高评估模型的准确率,验证该方法对于高维时序特征筛选处理的有效性及必要性。 展开更多
关键词 暂态电压稳定评估 特征选择 RELIEF算法 群智能优化 卷积门控循环单元
下载PDF
针对电力系统数据缺失的暂态电压稳定评估方法 被引量:2
3
作者 姜鸣瞻 杨楚原 +4 位作者 蒋何为 崔梓琪 袁铭洋 刘颂凯 张磊 《内蒙古电力技术》 2024年第1期27-32,共6页
针对数据缺失时暂态电压稳定评估模型精度下降的问题,提出一种基于多视图缺失数据填充和门控图神经网络的电力系统暂态电压稳定评估方法。首先,基于多视图互补的时空视图来填充缺失数据,得到完整的数据集;然后,采用修复完整的数据集训... 针对数据缺失时暂态电压稳定评估模型精度下降的问题,提出一种基于多视图缺失数据填充和门控图神经网络的电力系统暂态电压稳定评估方法。首先,基于多视图互补的时空视图来填充缺失数据,得到完整的数据集;然后,采用修复完整的数据集训练门控图神经网络模型进行暂态电压稳定评估,评估模型要进行快速更新,以提高在线应用的性能;最后,在IEEE39节点系统算例上进行验证所提方法的有效性。仿真结果表明,本文方法可以在任何同步向量测量单元放置信息丢失和网络拓扑变化的情况下及时有效地填补缺失数据,且所用评估模型的评估性能具有显著优势。 展开更多
关键词 测量数据缺失 时空视图 门控图神经网络 暂态电压稳定评估
下载PDF
融合注意力机制和卷积神经网络的电网暂态电压稳定评估及可解释性分析
4
作者 张哲 秦博宇 +2 位作者 高鑫 丁涛 张逸兴 《电网技术》 EI CSCD 北大核心 2024年第11期4648-4657,I0057,I0056,共12页
提升复杂多变运行场景下电网稳定评估的时效性和准确性,提出一种融合注意力机制和卷积神经网络(convolutional neural network,CNN)的暂态电压稳定评估及可解释性分析方法。首先,采用卷积块注意力模块(convolutional block attention mo... 提升复杂多变运行场景下电网稳定评估的时效性和准确性,提出一种融合注意力机制和卷积神经网络(convolutional neural network,CNN)的暂态电压稳定评估及可解释性分析方法。首先,采用卷积块注意力模块(convolutional block attention module,CB AM)提升传统CNN的特征捕获能力,考虑模型特性和网络结构设计CBAMCNN组合模块。其次,建立基于CBAM-CNN的电网暂态电压稳定评估模型,揭示运行工况多变场景下系统关键电气量和稳定状态之间的映射关系。最后,基于沙普利值加性解释(Shapley additive explanations,SHAP)理论提出数据驱动模型评估结果的可解释性分析框架,提炼影响样本稳定状态的主导特征,评估各输入特征量对模型输出结果的贡献程度。在典型受端电网仿真系统中验证了所提稳定评估方法的准确性和可解释性分析方法的有效性。 展开更多
关键词 卷积块注意力模块-卷积神经网络 暂态电压稳定评估 沙普利值加性解释理论 可解释性分析
下载PDF
基于grcForest模型的风电并网系统暂态电压稳定评估 被引量:11
5
作者 陈康 王泽 郭永吉 《智慧电力》 北大核心 2023年第1期31-37,共7页
针对现阶段机器学习在风电并网系统暂态电压稳定评估的快速性、准确性方面存在的不足,提出了一种基于grcForest模型的风电并网系统暂态电压稳定评估方法。首先针对输入特征数目随着级联森林层数的增加可能出现的梯度增长或梯度减少的问... 针对现阶段机器学习在风电并网系统暂态电压稳定评估的快速性、准确性方面存在的不足,提出了一种基于grcForest模型的风电并网系统暂态电压稳定评估方法。首先针对输入特征数目随着级联森林层数的增加可能出现的梯度增长或梯度减少的问题,采用残差网络对其进行优化,保证了层数增加后的模型依旧能保持最初的学习能力;其次分析风电并网系统暂态电压的关键影响因素,结合暂态故障构建输入特征;再通过评估模型离线训练,完成模型的参数设置和性能优化;最后把构建完成的输入特征应用于grcForest风电并网系统暂态电压稳定评估模型,结合数据对模型进行评估验证。IEEE10机39节点系统的仿真分析验证了该方法的快速性和准确性。 展开更多
关键词 风电 暂态电压稳定评估 grcForest模型 输入特征 残差网络
下载PDF
基于改进深度残差网络的电力系统暂态电压稳定评估 被引量:2
6
作者 刘浩然 任惠 +3 位作者 郑至斌 王威 夏静 杨金豪 《现代电力》 北大核心 2023年第6期879-889,共11页
传统的电力系统暂态电压稳定评估模型存在2方面问题:故障过程中的关键信息难以捕捉、暂态稳定样本与失稳样本不平衡导致模型对多数类样本存在倾向性。为此,提出了基于改进深度残差网络的电压稳定预警模型。首先,为了捕捉故障过程中的关... 传统的电力系统暂态电压稳定评估模型存在2方面问题:故障过程中的关键信息难以捕捉、暂态稳定样本与失稳样本不平衡导致模型对多数类样本存在倾向性。为此,提出了基于改进深度残差网络的电压稳定预警模型。首先,为了捕捉故障过程中的关键信息,在残差网络中嵌入卷积注意力模块,通过对时间通道与空间通道的双重注意力来挖掘电力系统动态轨迹中潜在的时空关系;其次,针对训练过程中模型倾向于多数类样本的问题,引入基于梯度平衡机制的损失函数来减小不平衡样本对评估结果的影响;第三,为了强化模型对数据特征的提取能力,将传统卷积核替换为非对称卷积模块。最后,通过在IEEE39节点系统上接入2种不同风电占比进行测试,进一步验证所提方法在暂态电压稳定评估中的优异性能。 展开更多
关键词 暂态电压稳定评估 深度残差网络 卷积注意力模块 梯度平衡机制 非对称卷积模块
下载PDF
基于数据挖掘的区域暂态电压稳定评估 被引量:29
7
作者 朱利鹏 陆超 +3 位作者 孙元章 黄河 苏寅生 李智欢 《电网技术》 EI CSCD 北大核心 2015年第4期1026-1032,共7页
针对区域暂态电压稳定评估相关理论还不完善、工程判据可靠性不足等问题,提出了基于数据挖掘的区域暂态电压稳定评估方法,构建了综合考虑单点负荷稳定与多点电压相互影响的2层评价框架。利用节点稳定度量指标及基于辨识的电压无功灵敏... 针对区域暂态电压稳定评估相关理论还不完善、工程判据可靠性不足等问题,提出了基于数据挖掘的区域暂态电压稳定评估方法,构建了综合考虑单点负荷稳定与多点电压相互影响的2层评价框架。利用节点稳定度量指标及基于辨识的电压无功灵敏度矩阵提取网络原始特征。面对区域暂态电压失稳尚无可靠界定标准的难题,采用基于约束的半监督学习方式对数据集进行可靠分类。基于决策树算法建立逐步更新的分类模型,生成区域暂态电压稳定判据,通过模型挖掘出有关电压分区、代表节点的内在规律。EPRI 36节点系统上的仿真结果证明了评估方案的有效性,以及分类评估模型的适应性和准确性。 展开更多
关键词 区域暂态电压稳定评估 数据挖掘 灵敏度辨识 半监督学习 决策树
下载PDF
基于交叠概率的暂态电压稳定评估特征选择 被引量:6
8
作者 张凤 李兴源 +2 位作者 胥威汀 何笠 井艳清 《电网技术》 EI CSCD 北大核心 2012年第6期116-121,共6页
针对电力系统的高维特征量,提出了一种能有效降低维数的特征选择方法。该方法以最小概率落入类别间的不可判别区域为原则选取特征组合。算法核心在于特征组合过滤判据的确定,判据的形成基于样本点落入类别间交叠区域的概率,方法简易直... 针对电力系统的高维特征量,提出了一种能有效降低维数的特征选择方法。该方法以最小概率落入类别间的不可判别区域为原则选取特征组合。算法核心在于特征组合过滤判据的确定,判据的形成基于样本点落入类别间交叠区域的概率,方法简易直观。针对系统的暂态电压稳定评估问题,首先构建了一组暂态电压稳定评估的原始特征属性集,将经特征选择降维后的特征组合作为决策树的输入,并用10倍交叉验证方法对评估结果进行验证。2个标准系统的算例表明,通过该方法对暂态电压稳定评估进行特征选择得到的特征属性组合在电压稳定评估的应用上具有更高的准确率。 展开更多
关键词 交叠概率 特征选择 暂态电压稳定评估 决策树 电力系统
下载PDF
基于CPSO-BP神经网络的风电并网暂态电压稳定评估 被引量:23
9
作者 张晓英 史冬雪 +2 位作者 张琎 王琨 陈伟 《智慧电力》 北大核心 2021年第10期38-44,共7页
针对目前传统方法难以快速、准确判断风电并网后系统暂态电压稳定性的问题,提出了一种基于CPSOBP组合的风电并网暂态电压稳定评估方法。首先采用混沌理论对粒子群算法的不足进行改善,应用改进后的算法对神经网络的初始权值和阈值进行优... 针对目前传统方法难以快速、准确判断风电并网后系统暂态电压稳定性的问题,提出了一种基于CPSOBP组合的风电并网暂态电压稳定评估方法。首先采用混沌理论对粒子群算法的不足进行改善,应用改进后的算法对神经网络的初始权值和阈值进行优化,然后利用系统故障前后采集的传统物理量和风电场相关的物理量作为BP神经网络输入特征量进行监督学习,最后将训练得到的模型应用于风电并网系统的暂态电压稳定评估中。利用英格兰10机39节点系统标准算例进行风电并网仿真分析,结果证明了所提方法的有效性。 展开更多
关键词 风电 CPSO-BP神经网络 输入特征 暂态电压稳定评估
下载PDF
一种数据驱动的暂态电压稳定评估方法及其可解释性研究 被引量:38
10
作者 周挺 杨军 +4 位作者 詹祥澎 裴洋舟 张俊 陈厚桂 朱凤华 《电网技术》 EI CSCD 北大核心 2021年第11期4416-4425,共10页
将数据驱动方法用于电力系统暂态电压稳定评估可以较好地兼顾预测速度与准确性,但存在模型泛化能力不佳及可解释性差等问题。利用系统故障后采集的物理量作为输入特征,基于支持类别特征的梯度提升(gradient boosting with categorical f... 将数据驱动方法用于电力系统暂态电压稳定评估可以较好地兼顾预测速度与准确性,但存在模型泛化能力不佳及可解释性差等问题。利用系统故障后采集的物理量作为输入特征,基于支持类别特征的梯度提升(gradient boosting with categorical features support,Catboost)算法构建暂态电压稳定评估模型。在模型训练中采用排序提升的方法避免预测偏移问题,提升准确性;使用对称决策树以提高计算效率;同时考虑数据的类别不平衡特性,采用代价敏感手段提高模型的分类性能。为了提高模型的可解释性,提出基于SHAP理论的暂态电压稳定评估归因分析框架,通过计算Shapley值的平均绝对值大小得到暂态电压稳定特征重要性排序,并根据每个特征的边际贡献,进一步量化不同输入特征对模型输出结果的影响。在新英格兰10机39节点系统上的测试结果表明,所提方法比其他机器学习算法具有更高的预测准确性与更快的预测速度,基于Shapley值的归因分析方法能够有效地解释输入特征对暂态电压稳定的影响以及机器学习模型对样本的预测结果。 展开更多
关键词 暂态电压稳定评估 数据驱动 Catboost模型 可解释性 SHAPLEY值
下载PDF
基于轨迹簇和MBLDA的受端电网暂态电压稳定评估 被引量:7
11
作者 刘鸣 王长江 +2 位作者 李斌 范维 段方维 《电力系统保护与控制》 CSCD 北大核心 2021年第19期27-37,共11页
针对现有暂态电压状态的多样化以及暂态电压稳定模型训练速度有待进一步提升的问题,提出一种基于电压轨迹簇和多类间线性判别分析(Multiple Between-class Linear Discriminant Analysis,MBLDA)的交直流系统暂态电压稳定评估方法。首先... 针对现有暂态电压状态的多样化以及暂态电压稳定模型训练速度有待进一步提升的问题,提出一种基于电压轨迹簇和多类间线性判别分析(Multiple Between-class Linear Discriminant Analysis,MBLDA)的交直流系统暂态电压稳定评估方法。首先,获取故障后系统关键节点电压受扰轨迹簇信息,借助轨迹簇的几何属性建立暂态电压稳定评估的原始特征集。进而采用ReliefF算法对原始特征集进行压缩,筛选出与系统暂态电压稳定状态密切相关的特征子集,有效表征暂态电压稳定的四种状态(电压迅速恢复、电压延迟恢复、持续低电压、电压振荡)。然后,将高维电压特征空间的特征值方程转化为欠定齐次方程组,提高暂态电压稳定评估模型的训练速度,进而建立大规模系统电压特征集与4种暂态电压稳定状态的映射关系。最后,通过修改后的IEEE39节点系统和修改后的IEEE145节点系统的仿真分析,验证所提方法的可行性与有效性。 展开更多
关键词 交直流受端系统 模式识别法 暂态电压稳定评估 多类间线性判别分析
下载PDF
基于KPCA特征量降维的风电并网系统暂态电压稳定性评估
12
作者 张晓英 史冬雪 +1 位作者 张琎 张鑫 《兰州理工大学学报》 CAS 北大核心 2024年第2期96-103,共8页
针对电力系统暂态电压稳定性评估中所需特征量数据庞大,影响模型训练时间,降低计算效率等问题,提出了一种基于核主成分分析方法KPCA和CPSO-BP组合的风电并网系统暂态电压稳定性评估方法.首先根据输入特征采集原始特征集,采用核主成分分... 针对电力系统暂态电压稳定性评估中所需特征量数据庞大,影响模型训练时间,降低计算效率等问题,提出了一种基于核主成分分析方法KPCA和CPSO-BP组合的风电并网系统暂态电压稳定性评估方法.首先根据输入特征采集原始特征集,采用核主成分分析算法对特征量进行非线性数据处理,提取出最优的特征集.然后将降维后的特征集作为CPSO-BP神经网络输入量进行监督学习,将得到的模型按照临界故障切除时间裕度值的大小进行分类,将分类后的样本进行风电并网系统的暂态电压稳定性评估和临界故障切除时间裕度值预测.仿真分析结果表明,对输入特征进行降维,保留重要输入特征量,剔除冗余特征量,不仅简化了模型,还提高了网络评估的准确性和计算效率. 展开更多
关键词 风电并网 核主成分分析算法 降维 CPSO-BP神经网络 暂态电压稳定评估
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部