为了在模型参数先验分布知识未知情况下实现基于区域和统计的图像分割,并同时获取更加精确的模型参数,提出了一种结合Voronoi划分技术、最大期望值(Expectation Maximization,EM)和最大边缘概率(Maximizationof the Posterior Marginal,...为了在模型参数先验分布知识未知情况下实现基于区域和统计的图像分割,并同时获取更加精确的模型参数,提出了一种结合Voronoi划分技术、最大期望值(Expectation Maximization,EM)和最大边缘概率(Maximizationof the Posterior Marginal,MPM)算法的图像分割方法。该方法利用Voronoi划分技术将图像域划分为若干子区域,待分割图像中的同质区域可以由一组子区域拟合而成,并假定各同质区域内像素强度服从同一独立的正态分布,从而建立图像模型,然后结合EM/MPM算法进行图像分割和模型参数估计,其中,MPM算法用于实现面向同质区域的图像分割,EM算法用于估计图像模型参数。为了验证提出的图像分割方法,分别对合成图像和真实图像进行了分割实验,并和传统的基于像素的MRF分割结果进行对比,测试结果的定性和定量分析表明了该方法的有效性和准确性。展开更多
文摘目的 SAR图像中固有的相干斑噪声增加了图像分割的困难。为此,提出一种分布式SAR图像分割算法。方法首先假设图像中同质区域内像素满足同一独立的Gamma分布,依此建立SAR图像模型;为了刻画SAR图像中像素的类属性,建立标号场的MRF(Markov Random Field)模型;在Bayesian理论框架下建立图像分割模型;在多主体系统(MAS)框架下,结合MRF模型和遗传算法(GA)模拟分割模型。MAS结构由分割主体和协调主体组成,其中分割主体利用最大期望值(EM)算法估计MRF模型参数,从而实现全局分割;协调主体利用GA实现全局最优。结果为了验证提出方法的有效性,分别对模拟和RADARSAT-I/II SAR图像进行实验,并与EM和RJMCMC算法比较。本文算法的用户精度、产品精度、总精度及kappa系数均高于EM算法。定性和定量分析结果验证了本文算法的鲁棒性和有效性。结论实验结果表明提出的分布式MAS框架下SAR图像分割方法,能够提高分割精度。该方法适用于中高分辨率单极化的SAR图像,且具有很好的抗噪性。
文摘为了在模型参数先验分布知识未知情况下实现基于区域和统计的图像分割,并同时获取更加精确的模型参数,提出了一种结合Voronoi划分技术、最大期望值(Expectation Maximization,EM)和最大边缘概率(Maximizationof the Posterior Marginal,MPM)算法的图像分割方法。该方法利用Voronoi划分技术将图像域划分为若干子区域,待分割图像中的同质区域可以由一组子区域拟合而成,并假定各同质区域内像素强度服从同一独立的正态分布,从而建立图像模型,然后结合EM/MPM算法进行图像分割和模型参数估计,其中,MPM算法用于实现面向同质区域的图像分割,EM算法用于估计图像模型参数。为了验证提出的图像分割方法,分别对合成图像和真实图像进行了分割实验,并和传统的基于像素的MRF分割结果进行对比,测试结果的定性和定量分析表明了该方法的有效性和准确性。