Let n = p1p2 ··· pk, where pi(1 ≤ i ≤ k) are primes in the descending order and are not all equal. Let Ωk(n) = P(p1 + p2)P(p2 + p3) ··· P(pk-1+ pk)P(pk+ p1), where P(n) is the largest ...Let n = p1p2 ··· pk, where pi(1 ≤ i ≤ k) are primes in the descending order and are not all equal. Let Ωk(n) = P(p1 + p2)P(p2 + p3) ··· P(pk-1+ pk)P(pk+ p1), where P(n) is the largest prime factor of n. Define w0(n) = n and wi(n) = w(wi-1(n)) for all integers i ≥ 1. The smallest integer s for which there exists a positive integer t such thatΩs k(n) = Ωs+t k(n) is called the index of periodicity of n. The authors investigate the index of periodicity of n.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11371195,11471017)the Youth Foundation of Mathematical Tianyuan of China(No.11126302)the Project of Graduate Education Innovation of Jiangsu Province(No.CXZZ12-0381)
文摘Let n = p1p2 ··· pk, where pi(1 ≤ i ≤ k) are primes in the descending order and are not all equal. Let Ωk(n) = P(p1 + p2)P(p2 + p3) ··· P(pk-1+ pk)P(pk+ p1), where P(n) is the largest prime factor of n. Define w0(n) = n and wi(n) = w(wi-1(n)) for all integers i ≥ 1. The smallest integer s for which there exists a positive integer t such thatΩs k(n) = Ωs+t k(n) is called the index of periodicity of n. The authors investigate the index of periodicity of n.