部分变量误差模型(partial EIV model)的加权整体最小二乘(weighted total least-squares,WTLS)估计不具备抵御粗差的能力。鉴于粗差可能同时出现在观测值和系数矩阵中,本文在提出部分变量误差模型WTLS估计的两步迭代解法的基础上,运用...部分变量误差模型(partial EIV model)的加权整体最小二乘(weighted total least-squares,WTLS)估计不具备抵御粗差的能力。鉴于粗差可能同时出现在观测值和系数矩阵中,本文在提出部分变量误差模型WTLS估计的两步迭代解法的基础上,运用抗差M估计的等价权方法,发展了一种整体抗差最小二乘(TRLS)估计方法,并采用一致最大功效统计量确定降权因子。针对WTLS估计两步迭代解法的特点,设计了两个不同的降权方案:第1个方案是在估计系数矩阵元素时,不对观测值降权,仅对系数矩阵降权;第2个方案是在估计系数矩阵元素时,既对系数矩阵降权,同时也对观测值降权。通过对模拟2D仿射变换和线性拟合实例进行计算和分析,结果表明第1方案优于第2方案,并且优于基于残差和验后单位权方差的抗差估计和现有的变量误差模型抗差估计。展开更多
针对EIV模型的系数矩阵同时包含固定量和随机量的情况,通过将系数矩阵中的随机量提取出来纳入平差的随机模型,从而将EIV模型表示为非线性高斯-赫尔默特(Gauss-Herlmert,GH)模型形式,推导了混合LS-TLS(least squares-total least squares...针对EIV模型的系数矩阵同时包含固定量和随机量的情况,通过将系数矩阵中的随机量提取出来纳入平差的随机模型,从而将EIV模型表示为非线性高斯-赫尔默特(Gauss-Herlmert,GH)模型形式,推导了混合LS-TLS(least squares-total least squares,LS-TLS)算法及其精度估计公式。算法适用于系数矩阵包含固定列、固定元素和随机元素的一般情况。模拟实例结果表明,混合LS-TLS算法与已有能够解决系数矩阵同时含固定量和随机量的结构性或加权TLS算法的估计结果一致;混合LS-TLS的估计结果统计上要优于LS或TLS估计结果。展开更多
In ISAR系统能够在短观测时间内实现对目标的3维成像,在目标识别和分类中有广泛应用。但是ISAR成像平面不仅取决于目标相对雷达的空间位置,还和目标的运动情况有关。针对空间平稳运动目标,该文利用互相垂直的L型基线构成双通道In ISAR系...In ISAR系统能够在短观测时间内实现对目标的3维成像,在目标识别和分类中有广泛应用。但是ISAR成像平面不仅取决于目标相对雷达的空间位置,还和目标的运动情况有关。针对空间平稳运动目标,该文利用互相垂直的L型基线构成双通道In ISAR系统,对各天线接收到的回波分别采用各自的参考距离进行聚焦处理,采用传统的距离-多普勒算法得到目标散射点2维像,通过提取各散射点的干涉相位和多普勒信息,采用最小二乘方法对目标的有效转动角速度大小和方向进行估计,进而估计出散射点的3维位置,实现目标3维成像。仿真实验验证了所提方法的有效性和鲁棒性。展开更多
文摘部分变量误差模型(partial EIV model)的加权整体最小二乘(weighted total least-squares,WTLS)估计不具备抵御粗差的能力。鉴于粗差可能同时出现在观测值和系数矩阵中,本文在提出部分变量误差模型WTLS估计的两步迭代解法的基础上,运用抗差M估计的等价权方法,发展了一种整体抗差最小二乘(TRLS)估计方法,并采用一致最大功效统计量确定降权因子。针对WTLS估计两步迭代解法的特点,设计了两个不同的降权方案:第1个方案是在估计系数矩阵元素时,不对观测值降权,仅对系数矩阵降权;第2个方案是在估计系数矩阵元素时,既对系数矩阵降权,同时也对观测值降权。通过对模拟2D仿射变换和线性拟合实例进行计算和分析,结果表明第1方案优于第2方案,并且优于基于残差和验后单位权方差的抗差估计和现有的变量误差模型抗差估计。
文摘针对EIV模型的系数矩阵同时包含固定量和随机量的情况,通过将系数矩阵中的随机量提取出来纳入平差的随机模型,从而将EIV模型表示为非线性高斯-赫尔默特(Gauss-Herlmert,GH)模型形式,推导了混合LS-TLS(least squares-total least squares,LS-TLS)算法及其精度估计公式。算法适用于系数矩阵包含固定列、固定元素和随机元素的一般情况。模拟实例结果表明,混合LS-TLS算法与已有能够解决系数矩阵同时含固定量和随机量的结构性或加权TLS算法的估计结果一致;混合LS-TLS的估计结果统计上要优于LS或TLS估计结果。