期刊文献+
共找到849篇文章
< 1 2 43 >
每页显示 20 50 100
最小二乘支持向量回归滤波系统性能分析 被引量:6
1
作者 邓小英 杨顶辉 +2 位作者 刘涛 李月 杨宝俊 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2010年第8期2004-2011,共8页
支持向量机(Support Vector Machine:SVM)一直作为机器学习方法在统计学习理论基础上被研究和发展,本文从信号与系统的角度出发,证明了平移不变核最小二乘支持向量机(Least Squares SVM:LS-SVM)是一个线性时不变系统.以Ricker子波核为例... 支持向量机(Support Vector Machine:SVM)一直作为机器学习方法在统计学习理论基础上被研究和发展,本文从信号与系统的角度出发,证明了平移不变核最小二乘支持向量机(Least Squares SVM:LS-SVM)是一个线性时不变系统.以Ricker子波核为例,探讨了不同参数对最小二乘支持向量回归(Least Squares Support VectorRegression:LS-SVR)滤波器频率响应特性的影响,这些参数的不同选择相应地控制着滤波器通带上升沿的陡峭性、通带的中心频率、通带带宽以及信号能量的衰减,即滤波器长度越长通带的上升沿越陡,核参数值越大通带的中心频率越高,且通带带宽越宽,正则化参数值越小,通带带宽越窄(但通带中心频率基本保持恒定),有效信号幅度衰减越严重.合成地震记录的仿真实验结果表明,Ricker子波核LS-SVR滤波器在处理地震勘探信号的应用中,滤波性能优于径向基函数(Radial Basic Function:RBF)核LS-SVR滤波器以及小波变换滤波和Wiener滤波方法. 展开更多
关键词 支持向量 Ricker子波核 最小二乘支持向量回归滤波系统 频率响应 随机噪声
下载PDF
基于慢特征分析与最小二乘支持向量回归集成的草酸钴合成过程粒度预报
2
作者 张晗 张淑宁 +1 位作者 刘珂 邓冠龙 《化工学报》 EI CSCD 北大核心 2024年第6期2313-2321,共9页
草酸钴合成过程是钴湿法冶炼的关键单元操作,其粒度分布是重要的质量指标,然而难以在线实时测量。同时,草酸钴合成过程通常存在非线性、多约束和慢时变特征。因此,提出一种集成慢特征分析(slow feature analysis,SFA)与最小二乘支持向... 草酸钴合成过程是钴湿法冶炼的关键单元操作,其粒度分布是重要的质量指标,然而难以在线实时测量。同时,草酸钴合成过程通常存在非线性、多约束和慢时变特征。因此,提出一种集成慢特征分析(slow feature analysis,SFA)与最小二乘支持向量回归(least square support vector regression,LSSVR)的草酸钴粒度预报模型对草酸钴合成过程质量指标实现在线测量。在该方法中,首先,SFA方法可以有效地捕获过程的慢特征向量,解决慢时变问题;然后,利用LSSVR方法建立慢特征与粒度之间的非线性关系模型,进而实现质量指标在线预报。最后,应用非线性的数值案例以及草酸钴合成过程数据,验证该方法的有效性。实验结果显示:相较于单一的径向基函数神经网络(radial basis function neural network,RBFNN)、LSSVR预测模型以及SFA与NN相结合的预报模型,所提方法在数值案例中的预测精度分别提升了13.31%、2.26%、1.72%;在草酸钴合成过程中的预测精度分别提升了13.27%、9.96%、8.92%。 展开更多
关键词 草酸钴合成过程 软测量 慢特征分析 最小乘支持向量回归 化学过程 预测 神经网络
下载PDF
基于最小二乘支持向量机的新型电力系统谐波分量预测
3
作者 戴金 《电力与能源》 2024年第5期563-567,共5页
电力电子设备在发电、输电、配电及用电各个领域均有广泛应用,在改善居民生活质量与提升工业生产效率的同时,也引入了大量的谐波,造成电力系统谐波污染。电力系统在不同采样点处的谐波含量不同,而最小二乘支持向量机(LSSVM)具有预测精... 电力电子设备在发电、输电、配电及用电各个领域均有广泛应用,在改善居民生活质量与提升工业生产效率的同时,也引入了大量的谐波,造成电力系统谐波污染。电力系统在不同采样点处的谐波含量不同,而最小二乘支持向量机(LSSVM)具有预测精度高、预测效率高等优点,可应用于谐波含量预测。为了验证所提出算法的有效性,搭建了仿真模型,对光伏发电系统、风力发电系统以及储能装置充放电处的电流的谐波含量进行了预测。仿真结果表明:在不同工况下和不同类型的谐波含量下,该算法均具有较高的预测精度。 展开更多
关键词 新型电力系统 谐波含量 预测算法 最小乘支持向量
下载PDF
基于蚁群优化最小二乘支持向量回归机的河蟹养殖溶解氧预测模型 被引量:39
4
作者 刘双印 徐龙琴 +1 位作者 李道亮 曾利华 《农业工程学报》 EI CAS CSCD 北大核心 2012年第23期167-175,共9页
养殖池塘溶解氧是河蟹赖以生存的重要指标,及时准确地掌握溶解氧浓度变化趋势是确保高密度河蟹健康养殖的关键。为提高溶解氧预测精度和效率,该文提出了蚁群算法(ACA)优化最小二乘支持向量回归机(LSSVR)的河蟹养殖溶解氧预测方法。采用... 养殖池塘溶解氧是河蟹赖以生存的重要指标,及时准确地掌握溶解氧浓度变化趋势是确保高密度河蟹健康养殖的关键。为提高溶解氧预测精度和效率,该文提出了蚁群算法(ACA)优化最小二乘支持向量回归机(LSSVR)的河蟹养殖溶解氧预测方法。采用蚁群算法对最小二乘支持向量回归机的模型参数进行优化,并以自动获取的最佳参数组合构建溶解氧与其影响因子间非线性预测模型。利用该模型对江苏宜兴市2010年7月20日~7月28日期间高密度养殖池塘溶解氧进行预测。研究表明,该预测模型取得较好的预测效果,与支持向量回归机和BP神经网络相比,模型评价指标均方根误差、相对均方误差均值、平均绝对误差和和决定系数和运行时间分别为0.0328、0.0016、0.0448、0.9916和3.3275s均优于其他预测方法,ACA-LSSVR模型不仅计算复杂度低、收敛速度快、预测精度高、泛化能力强,还能满足实际高密度河蟹养殖溶解氧管理的需要,为其他领域的水质预测提供参考。 展开更多
关键词 模型 优化 算法 溶解氧预测 最小乘支持向量回归 河蟹养殖
下载PDF
自适应迭代最小二乘支持向量机回归算法 被引量:14
5
作者 杨滨 杨晓伟 +3 位作者 黄岚 梁艳春 周春光 吴春国 《电子学报》 EI CAS CSCD 北大核心 2010年第7期1621-1625,共5页
基于最小二乘支持向量机回归算法,本文在前期工作的基础上进行了扩展,提出了更加详尽的自适应迭代最小二乘支持向量机回归算法.与标准的LSSVR相比,本文提出的算法在学习新样本的时候利用了已有的学习结果,可以快速获得新的学习机.模拟... 基于最小二乘支持向量机回归算法,本文在前期工作的基础上进行了扩展,提出了更加详尽的自适应迭代最小二乘支持向量机回归算法.与标准的LSSVR相比,本文提出的算法在学习新样本的时候利用了已有的学习结果,可以快速获得新的学习机.模拟结果表明,自适应迭代最小二乘支持向量机回归算法能够自适应地确定支持向量的数目,保留了QP方法在训练SVM时支持向量的稀疏性,在相近的回归精度下,该算法极大地提高了标准LSSVR学习的速度. 展开更多
关键词 支持向量 自适应 迭代 回归 最小二乘
下载PDF
基于偏最小二乘回归和最小二乘支持向量机的大坝渗流监控模型 被引量:24
6
作者 李波 顾冲时 +1 位作者 李智录 张真真 《水利学报》 EI CSCD 北大核心 2008年第12期1390-1394,1400,共6页
利用偏最小二乘回归法对影响大坝渗流的诸多因素进行分析,提取对因变量影响强的成分,克服了变量间的多重相关性问题,降低了最小二乘支持向量机的输入维数,从而可以较好的解决非线性问题,建立了基于PLS-LSSVM的大坝渗流监控模型。实例分... 利用偏最小二乘回归法对影响大坝渗流的诸多因素进行分析,提取对因变量影响强的成分,克服了变量间的多重相关性问题,降低了最小二乘支持向量机的输入维数,从而可以较好的解决非线性问题,建立了基于PLS-LSSVM的大坝渗流监控模型。实例分析表明,PLS-LSSVM模型的拟合与预测精度均优于独立使用PLS或LSSVM建模的精度;PLS-LSSVM模型的学习训练效率比LSSVM模型有较大的优势,更适合于大规模的数据建模。 展开更多
关键词 大坝渗流 最小二乘回归 最小乘支持向量 监控模型
下载PDF
基于最小二乘支持向量回归机的燃煤锅炉结渣特性预测 被引量:17
7
作者 徐志明 文孝强 +1 位作者 孙媛媛 孙灵芳 《中国电机工程学报》 EI CSCD 北大核心 2009年第17期8-13,共6页
对燃煤锅炉结渣特性建模预测并结合优化算法实现燃烧优化是降低锅炉结渣几率有效的方法。文中将煤的软化温度tST、硅铝比w(SiO2)/w(Al2O3)、碱酸比J、硅比G以及锅炉的无因次炉膛平均温度φt、无因次切圆直径φd等作为输入变量,以结渣程... 对燃煤锅炉结渣特性建模预测并结合优化算法实现燃烧优化是降低锅炉结渣几率有效的方法。文中将煤的软化温度tST、硅铝比w(SiO2)/w(Al2O3)、碱酸比J、硅比G以及锅炉的无因次炉膛平均温度φt、无因次切圆直径φd等作为输入变量,以结渣程度作为输出,建立最小二乘支持向量回归机燃煤锅炉结渣预测模型。同时采用显微镜原理对惩罚参数γ和核参数σ进行寻优,快速有效地获得二者的最优组合。通过对5台锅炉结渣特性进行预测评判,结果表明此方法是合理可行的。同时依据本方法及面向对象的高级语言,开发了相应的预测评判系统。 展开更多
关键词 最小乘支持向量回归 燃煤锅炉 动态指标 结渣 评判
下载PDF
基于最小二乘支持向量机的多变量逆系统控制方法及应用 被引量:29
8
作者 程启明 杜许峰 +1 位作者 郭瑞青 郑勇 《中国电机工程学报》 EI CSCD 北大核心 2008年第35期96-101,共6页
为提高多变量、非线性和强耦合系统的动态特性和解耦能力,解决逆模型辨识问题,讨论了基于最小二乘支持向量机(least squares support vector machines,LS-SVM)的多变量逆系统解耦控制方法。通过分析LS-SVM的函数拟合特性,离线建立被控... 为提高多变量、非线性和强耦合系统的动态特性和解耦能力,解决逆模型辨识问题,讨论了基于最小二乘支持向量机(least squares support vector machines,LS-SVM)的多变量逆系统解耦控制方法。通过分析LS-SVM的函数拟合特性,离线建立被控对象的非线性逆模型,将得到的逆模型直接串接在原对象之前,原系统被解耦成多个独立的单变量伪线性子系统。为克服直接逆模型的建模误差,提高系统鲁棒稳定性,提出了复合控制方法,其中直接逆模型作为前馈控制器,而用PID控制器作为反馈控制器。文中还分析了球磨机控制系统的特点,并进行了仿真控制研究,仿真结果表明该复合控制方法不依赖于系统的精确数学模型,且解耦能力强、鲁棒稳定性好、跟踪精度高。 展开更多
关键词 非线性多变量系统 系统 最小乘支持向量 复合控制 球磨机
下载PDF
序贯最小二乘支持向量机的结构系统识别 被引量:17
9
作者 唐和生 薛松涛 +1 位作者 陈镕 晋侃 《振动工程学报》 EI CSCD 北大核心 2006年第3期382-387,共6页
提出一种用于结构系统识别的序贯最小二乘支持向量机(SLS-SVM)方法,通过对训练数据的序列进入和数据缩减,分别采用增量算法和减缩修剪算法有效地改进了LS-SVM。这种方法克服了标准LS-SVM算法的稀疏性缺失的缺点,并使LS-SVM的序贯训练成... 提出一种用于结构系统识别的序贯最小二乘支持向量机(SLS-SVM)方法,通过对训练数据的序列进入和数据缩减,分别采用增量算法和减缩修剪算法有效地改进了LS-SVM。这种方法克服了标准LS-SVM算法的稀疏性缺失的缺点,并使LS-SVM的序贯训练成为可能。对非线性滞迟结构的在线参数识别显示了所提出方法的鲁棒性和高效率,同时也表明SLS-SVM算法的速度比批处理SVM算法要快。 展开更多
关键词 系统识别 滞迟结构 序贯 最小二乘 支持向量
下载PDF
基于主成分分析和最小二乘支持向量机的电力系统状态估计 被引量:18
10
作者 贾嵘 蔡振华 +2 位作者 刘晶 王小宇 杨可 《电网技术》 EI CSCD 北大核心 2006年第21期75-77,98,共4页
电力系统状态估计在能量管理系统中起着非常重要的作用,作者提出了基于主成分分析和最小二乘支持向量机的状态估计方法。首先对由量测量组成的初始样本进行主成分分析,对初始样本进行数据压缩和特征提取,消除数据间的相关性,提取出包含... 电力系统状态估计在能量管理系统中起着非常重要的作用,作者提出了基于主成分分析和最小二乘支持向量机的状态估计方法。首先对由量测量组成的初始样本进行主成分分析,对初始样本进行数据压缩和特征提取,消除数据间的相关性,提取出包含初始样本足够信息的主成分,然后将提取出的主成分作为最小二乘支持向量机的输入,降低了样本空间的维数。算例结果表明了所提出方法能有效地提高电力系统状态估计的精度。 展开更多
关键词 主成分分析 最小乘支持向量 状态估计 电力系统 核函数
下载PDF
基于粒子群优化的非线性系统最小二乘支持向量机预测控制方法 被引量:46
11
作者 穆朝絮 张瑞民 孙长银 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第2期164-168,共5页
对于非线性系统预测控制问题,本文提出了一种基于模型学习和粒子群优化(PSO)的单步预测控制算法.该方法使用最小二乘支持向量机(LS-SVM)建立非线性系统模型并预测系统的输出值,通过输出反馈和偏差校正减少预测误差,由PSO滚动优化获得非... 对于非线性系统预测控制问题,本文提出了一种基于模型学习和粒子群优化(PSO)的单步预测控制算法.该方法使用最小二乘支持向量机(LS-SVM)建立非线性系统模型并预测系统的输出值,通过输出反馈和偏差校正减少预测误差,由PSO滚动优化获得非线性系统的控制量.该方法能在非线性系统数学模型未知的情况下设计出有效的预测控制器.通过对单变量多变量非线性系统进行仿真,证明了该预测控制方法是有效的,且具有良好的自适应能力和鲁棒性. 展开更多
关键词 非线性系统 预测控制 最小乘支持向量 粒子群
下载PDF
最小二乘支持向量机在汽车动态系统辨识中的应用 被引量:21
12
作者 郑水波 韩正之 +1 位作者 唐厚君 张勇 《上海交通大学学报》 EI CAS CSCD 北大核心 2005年第3期392-395,共4页
汽车转向时动态系统参考模型对于汽车稳定性的控制有重要影响.基于最小二乘支持向量机算法,应用网络搜索和交叉验证的方法选择支持向量机参数,并将其应用于汽车转向时的非线性动态系统辨识,取得了良好的辨识效果,建立的参考模型能够较... 汽车转向时动态系统参考模型对于汽车稳定性的控制有重要影响.基于最小二乘支持向量机算法,应用网络搜索和交叉验证的方法选择支持向量机参数,并将其应用于汽车转向时的非线性动态系统辨识,取得了良好的辨识效果,建立的参考模型能够较充分地描述汽车动力学行为. 展开更多
关键词 最小乘支持向量 系统辨识 网格搜索 交叉验证 汽车参考模型
下载PDF
最小二乘小波支持向量机在非线性系统辨识中的应用 被引量:44
13
作者 崔万照 朱长纯 +1 位作者 保文星 刘君华 《西安交通大学学报》 EI CAS CSCD 北大核心 2004年第6期562-565,586,共5页
基于小波分解和支持向量核函数的条件,提出了一种多维允许支持向量小波核函数.该核函数不仅是近似正交的,而且适用于信号的局部分析、信噪分离和突变信号的检测,从而提高了支持向量机的泛化能力.基于小波核函数和正则化理论提出了最小... 基于小波分解和支持向量核函数的条件,提出了一种多维允许支持向量小波核函数.该核函数不仅是近似正交的,而且适用于信号的局部分析、信噪分离和突变信号的检测,从而提高了支持向量机的泛化能力.基于小波核函数和正则化理论提出了最小二乘小波支持向量机(LS WSVM)并将LS WSVM用于非线性系统的辨识,提高了辨识效果,减少了计算量.仿真结果表明:LS WSVM在同等条件下比传统支持向量机的辨识精度提高约13 1%,因而更适合于工程应用. 展开更多
关键词 小波核函数 最小二乘小波支持向量 非线性系统辨识
下载PDF
基于共享最小二乘支持向量机模型的电站锅炉燃烧系统的优化 被引量:19
14
作者 高芳 翟永杰 +2 位作者 卓越 韩璞 陆原 《动力工程学报》 CAS CSCD 北大核心 2012年第12期928-933,940,共7页
电站锅炉燃烧系统是一个复杂的多输入多输出系统,为了在同一个模型中实现高效率、低污染物排放的优化目标,对标准最小二乘支持向量机回归方法进行了扩展.借助某电厂1 000MW超超临界锅炉的现场燃烧调整试验数据,建立了以锅炉热效率和NOx... 电站锅炉燃烧系统是一个复杂的多输入多输出系统,为了在同一个模型中实现高效率、低污染物排放的优化目标,对标准最小二乘支持向量机回归方法进行了扩展.借助某电厂1 000MW超超临界锅炉的现场燃烧调整试验数据,建立了以锅炉热效率和NOx排放质量浓度为输出的共享最小二乘支持向量机(LSSVM)模型,采用一种改进的粒子群算法对共享模型中的锅炉运行工况进行了寻优.结果表明:在共享LSSVM模型中,锅炉热效率和NOx排放质量浓度的平均预测误差分别可达到0.028%和2.16%,搜索得到的高效率和低NOx排放的参数组合可为电站锅炉优化运行提供指导. 展开更多
关键词 共享模型 多输出系统 最小乘支持向量 粒子群优化算法 锅炉热效率 NOX排放 质量浓度
下载PDF
基于最小二乘支持向量机逆系统的五自由度无轴承同步磁阻电机解耦控制 被引量:17
15
作者 朱熀秋 曹莉 +1 位作者 李衍超 刁小燕 《中国电机工程学报》 EI CSCD 北大核心 2013年第15期99-108,10,共10页
针对三自由度交直流混合磁轴承和二自由度无轴承同步磁阻电机构成的五自由度无轴承同步磁阻电机,实现磁轴承的径向悬浮力、轴向悬浮力、二自由度无轴承同步磁阻电机的径向悬浮力和电磁转矩的解耦控制是五自由度无轴承同步磁阻电机稳定... 针对三自由度交直流混合磁轴承和二自由度无轴承同步磁阻电机构成的五自由度无轴承同步磁阻电机,实现磁轴承的径向悬浮力、轴向悬浮力、二自由度无轴承同步磁阻电机的径向悬浮力和电磁转矩的解耦控制是五自由度无轴承同步磁阻电机稳定运行和精确控制的必要条件。该文在介绍五自由度无轴承同步磁阻电机基本结构的基础上,建立了三自由度交直流混合磁轴承和二自由度无轴承同步磁阻电机的数学模型,进而建立了五自由度无轴承同步磁阻电机的状态方程,并进行了可逆性分析。采用最小二乘支持向量机所具有的小样本逼近和辨识拟合能力,得到五自由度无轴承同步磁阻电机逆模型,根据逆系统方法的基本原理,将复杂的原非线性多变量耦合系统解耦成多个单输入单输出伪线性系统,并设计了闭环PID控制器。仿真和实验表明,电机具有良好的速度和悬浮特性,这种解耦方法能够实现五自由度无轴承同步各个被控量之间的动态解耦,并且系统具有良好的动静态性能。 展开更多
关键词 无轴承同步磁阻电机 磁轴承 系统 最小乘支持向量 解耦控制
下载PDF
基于模糊加权最小二乘支持向量回归的非线性系统建模方法 被引量:1
16
作者 熊中刚 刘忠 罗素莲 《探测与控制学报》 CSCD 北大核心 2019年第5期111-117,共7页
针对非线性系统建模时边界数据会产生较大的建模偏差、数据计算负荷大以及如何从数据集中选取K个近邻点才能保证其性能缺乏统一标准等问题,提出了基于模糊加权最小二乘支持向量回归的非线性系统建模方法。该方法融合了模糊加权机理与最... 针对非线性系统建模时边界数据会产生较大的建模偏差、数据计算负荷大以及如何从数据集中选取K个近邻点才能保证其性能缺乏统一标准等问题,提出了基于模糊加权最小二乘支持向量回归的非线性系统建模方法。该方法融合了模糊加权机理与最小二乘支持向量回归的优点,通过引入重叠因子,在保证建模精度(均方根误差越小越好)的情况下,去除建模过程中的一些非重要数据,减小建模方法的运算时间,并能将全局与局部建模方法相融合有效解决局部建模方法所产生的边界效应问题。实验验证结果表明,分别对几种方法从训练/测试均方根误差、不同重叠因子、计算时间方面比较都有明显的有效性和优越性。 展开更多
关键词 模糊加权机理 最小乘支持向量回归 非线性统 建模方法
下载PDF
最小二乘回归支持向量机对非线性时间序列预测的试验分析 被引量:16
17
作者 纪玲玲 林振山 +1 位作者 王昌雨 张志华 《解放军理工大学学报(自然科学版)》 EI 北大核心 2009年第1期92-97,共6页
利用最小二乘回归支持向量机LS-SVMR(least square support vectors machines for regression)对2个不同长度的时间序列资料,国家气候中心1982年1月~2005年12月Nino3区逐月海温距平指数(短序列),及1950年1月~2006年12月Nino3区逐月海温... 利用最小二乘回归支持向量机LS-SVMR(least square support vectors machines for regression)对2个不同长度的时间序列资料,国家气候中心1982年1月~2005年12月Nino3区逐月海温距平指数(短序列),及1950年1月~2006年12月Nino3区逐月海温距平指数(长序列)资料进行了预测试验,以验证支持向量机对气候变化中非线性时间序列的预测效果。结果表明:通过训练建立的最小二乘回归支持向量机模型,较好地反映了Nino3区海温距平指数的变化规律,36个月的预报效果较好,具有一定的可信度。资料的长度越长,预测结果与实测值的变化趋势越接近,但资料长度对均方根预报误差不敏感。 展开更多
关键词 最小二乘回归支持向量 海温距平指数 时间序列预测
下载PDF
板形模式识别的多输出最小二乘支持向量回归机新方法 被引量:6
18
作者 张秀玲 张少宇 +1 位作者 赵文保 徐腾 《中国机械工程》 EI CAS CSCD 北大核心 2013年第2期258-263,共6页
为了克服最小二乘支持向量回归机(LS-SVR)算法不能直接应用于多输入多输出(MIMO)系统建模的缺点,通过在目标函数中加入样本绝对误差项,提出了一种多输出最小二乘支持向量回归机(MLSSVR)新算法。将MLSSVR算法应用于板形模式识别研究,提... 为了克服最小二乘支持向量回归机(LS-SVR)算法不能直接应用于多输入多输出(MIMO)系统建模的缺点,通过在目标函数中加入样本绝对误差项,提出了一种多输出最小二乘支持向量回归机(MLSSVR)新算法。将MLSSVR算法应用于板形模式识别研究,提出了一种基于MLSSVR的板形模式识别新方法,将该方法与LS-SVR合成识别方法进行对比实验,并对MLSSVR识别模型的识别能力进行了测试和分析,结果证明了MLSSVR算法的有效性。MLSSVR板形模式识别方法不仅避免了LS-SVR合成方法的复杂组合运算,具有更高的识别速度,而且具有更高精度和很强的泛化能力。 展开更多
关键词 最小乘支持向量回归 多输出最小乘支持向量回归 板形 模式识别
下载PDF
局部最小二乘支持向量机回归在线建模方法及其在间歇过程的应用 被引量:18
19
作者 刘毅 王海清 李平 《化工学报》 EI CAS CSCD 北大核心 2007年第11期2846-2851,共6页
当间歇生产切换于不同的工艺条件时,由于新工况下的样本一般很少,且批次间存在着不确定性(由于原材料波动或过程动态特性波动等),基于全局学习的建模方法(如最小二乘支持向量机回归,LSSVR)建立的模型泛化性能不强。将局部学习融入LSSVR... 当间歇生产切换于不同的工艺条件时,由于新工况下的样本一般很少,且批次间存在着不确定性(由于原材料波动或过程动态特性波动等),基于全局学习的建模方法(如最小二乘支持向量机回归,LSSVR)建立的模型泛化性能不强。将局部学习融入LSSVR中,提出一种局部LSSVR(local LSSVR,LLSSVR)的间歇过程在线建模方法。结合前一批次离线优化后的LSSVR参数,针对待预测新样本在线选择与之相关的近邻样本集并基于此进行建模。以建立青霉素发酵过程的菌体浓度为例,验证了LLSSVR算法能够从过程的第2个生产批次开始在线建立较准确的预报模型,较LSSVR有着更好的推广能力、适应性和鲁棒性。 展开更多
关键词 局部最小乘支持向量回归 在线建模 间歇过程 发酵
下载PDF
基于最小二乘支持向量机的系统边际电价预测 被引量:20
20
作者 贾嵘 蔡振华 康睿 《高电压技术》 EI CAS CSCD 北大核心 2006年第11期145-148,共4页
系统边际电价是电力工业改革的关键因素之一,是电力市场的杠杆和核心内容。为克服神经网络预测法易陷入局部极小,隐层数不易确定,训练速度慢等问题,提出一种基于相似搜索和最小二乘支持向量机的系统边际电价预测方法,该方法对相似搜索... 系统边际电价是电力工业改革的关键因素之一,是电力市场的杠杆和核心内容。为克服神经网络预测法易陷入局部极小,隐层数不易确定,训练速度慢等问题,提出一种基于相似搜索和最小二乘支持向量机的系统边际电价预测方法,该方法对相似搜索得到的相似日的负荷—电价数据用最小二乘支持向量机建立电价预测模型,同时利用网格搜索和交叉验证自动选取最小二乘支持向量机相关参数。用美国加州电力市场的真实数据做实例验证结果表明该方法可有效提高预测精度。 展开更多
关键词 系统边际电价 电价预测 相似搜索 最小乘支持向量 网格搜索 交叉验证
下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部