当前胚胎硬件的实际工程应用受到限制,原因在于其应用设计自动化程度低,功能分化主要由人工完成,导致大规模电路功能分化难以实现.基于大规模电路功能分化的需要,针对典型多层胚胎硬件结构,提出了胚胎硬件功能的层次式有向超图描述及其...当前胚胎硬件的实际工程应用受到限制,原因在于其应用设计自动化程度低,功能分化主要由人工完成,导致大规模电路功能分化难以实现.基于大规模电路功能分化的需要,针对典型多层胚胎硬件结构,提出了胚胎硬件功能的层次式有向超图描述及其存储方式,开发了基于正则匹配的硬件语言描述到层次式有向超图的转换算法,从而有效地将胚胎硬件功能分化问题转换为不同粒度的超图划分问题.为了建立分粒度层次式有向超图模型,进而设计并实现了胚胎硬件的硬件语言描述到有向超图的转换系统(Hypergraph For Embryonics,HGFE).实验及分析表明,该系统适用于几十门至几万门的测试电路,为胚胎硬件功能分化提供了良好的图论模型,并和有向无环图对比,建模时间减少了至少28.7%,存储空间减少了至少30.1%,验证了该方法的优越性.展开更多
文摘当前胚胎硬件的实际工程应用受到限制,原因在于其应用设计自动化程度低,功能分化主要由人工完成,导致大规模电路功能分化难以实现.基于大规模电路功能分化的需要,针对典型多层胚胎硬件结构,提出了胚胎硬件功能的层次式有向超图描述及其存储方式,开发了基于正则匹配的硬件语言描述到层次式有向超图的转换算法,从而有效地将胚胎硬件功能分化问题转换为不同粒度的超图划分问题.为了建立分粒度层次式有向超图模型,进而设计并实现了胚胎硬件的硬件语言描述到有向超图的转换系统(Hypergraph For Embryonics,HGFE).实验及分析表明,该系统适用于几十门至几万门的测试电路,为胚胎硬件功能分化提供了良好的图论模型,并和有向无环图对比,建模时间减少了至少28.7%,存储空间减少了至少30.1%,验证了该方法的优越性.