A finite element method with boundary element method (FEM-BEM) is presented for computing electromagnetic induction. The features of an edge element method including the volume and surface edge element method are inve...A finite element method with boundary element method (FEM-BEM) is presented for computing electromagnetic induction. The features of an edge element method including the volume and surface edge element method are investigated in depth. Surface basis functions of edge elements to an arbitrary shape of target are derived according to the geometrical property of basis functions and applied to discretize the surface integral equation for 3-D general targets. The proposed model is presented to compute resonant frequencies and surface current of underground unexplored ordnance (UXO), and then the electromagnetic responses of single target with different frequencies and positions of sensor are simulated and results are validated by experiments.展开更多
Sloshing of liquid can increase the dynamic pressure on the storage sidewalls and bottom in tanker ships and LNG careers. Different geometric shapes were suggested for storage tank to minimize the sloshing pressure on...Sloshing of liquid can increase the dynamic pressure on the storage sidewalls and bottom in tanker ships and LNG careers. Different geometric shapes were suggested for storage tank to minimize the sloshing pressure on tank perimeter. In this research, a numerical code was developed to model liquid sloshing in a rectangular partially filled tank. Assuming the fluid to be inviscid, Laplace equation and nonlinear free surface boundary conditions are solved using coupled FEM-BEM. The code performance for sloshing modeling is validated against available data. To minimize the sloshing pressure on tank perimeter, rectangular tanks with specific volumes and different aspect ratios were investigated and the best aspect ratios were suggested. The results showed that the rectangular tank with suggested aspect ratios, not only has a maximum surrounded tank volume to the constant available volume, but also reduces the sloshing pressure efficiently.展开更多
For the structural-acoustic radiation optimization problem under external loading,acoustic radiation power was considered to be an objective function in the optimization method. The finite element method(FEM) and boun...For the structural-acoustic radiation optimization problem under external loading,acoustic radiation power was considered to be an objective function in the optimization method. The finite element method(FEM) and boundary element method(BEM) were adopted in numerical calculations,and structural response and the acoustic response were assumed to be de-coupled in the analysis. A genetic algorithm was used as the strategy in optimization. In order to build the relational expression of the pressure objective function and the power objective function,the enveloping surface model was used to evaluate pressure in the acoustic domain. By taking the stiffened panel structural-acoustic optimization problem as an example,the acoustic power and field pressure after optimized was compared. Optimization results prove that this method is reasonable and effective.展开更多
文摘A finite element method with boundary element method (FEM-BEM) is presented for computing electromagnetic induction. The features of an edge element method including the volume and surface edge element method are investigated in depth. Surface basis functions of edge elements to an arbitrary shape of target are derived according to the geometrical property of basis functions and applied to discretize the surface integral equation for 3-D general targets. The proposed model is presented to compute resonant frequencies and surface current of underground unexplored ordnance (UXO), and then the electromagnetic responses of single target with different frequencies and positions of sensor are simulated and results are validated by experiments.
文摘Sloshing of liquid can increase the dynamic pressure on the storage sidewalls and bottom in tanker ships and LNG careers. Different geometric shapes were suggested for storage tank to minimize the sloshing pressure on tank perimeter. In this research, a numerical code was developed to model liquid sloshing in a rectangular partially filled tank. Assuming the fluid to be inviscid, Laplace equation and nonlinear free surface boundary conditions are solved using coupled FEM-BEM. The code performance for sloshing modeling is validated against available data. To minimize the sloshing pressure on tank perimeter, rectangular tanks with specific volumes and different aspect ratios were investigated and the best aspect ratios were suggested. The results showed that the rectangular tank with suggested aspect ratios, not only has a maximum surrounded tank volume to the constant available volume, but also reduces the sloshing pressure efficiently.
文摘For the structural-acoustic radiation optimization problem under external loading,acoustic radiation power was considered to be an objective function in the optimization method. The finite element method(FEM) and boundary element method(BEM) were adopted in numerical calculations,and structural response and the acoustic response were assumed to be de-coupled in the analysis. A genetic algorithm was used as the strategy in optimization. In order to build the relational expression of the pressure objective function and the power objective function,the enveloping surface model was used to evaluate pressure in the acoustic domain. By taking the stiffened panel structural-acoustic optimization problem as an example,the acoustic power and field pressure after optimized was compared. Optimization results prove that this method is reasonable and effective.