In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath f...In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath for ISF. A three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those from the experiment. The springback angle was found to be in accordance with the experimental result, proving the FEM to be effective. A coupled artificial neural networks (ANN) and finite element method technique was developed to simulate and predict springback responses to changes in the processing parameters. A particle swarm optimization (PSO) algorithm was used to optimize the weights and thresholds of the neural network model. The neural network was trained using available FEM simulation data. The results showed that a more accurate prediction of s!oringback can be acquired using the FEM-PSONN model.展开更多
The effect of extrusion parameters on the extrusion load for AZ31 magnesium alloy was investigated with the support of numerical methods.With this regard,the process temperature,extrusion ratio,friction factor and pun...The effect of extrusion parameters on the extrusion load for AZ31 magnesium alloy was investigated with the support of numerical methods.With this regard,the process temperature,extrusion ratio,friction factor and punch velocity were selected as main parameters for the experiments.Besides,the experimental results were analyzed by using the finite element method(FEM)and artificial neural network(ANN)method to build a numerical model for predicting the forming load.All the experimental and numerical results were compared to each other and it was concluded from the results that the effect of friction factor on the extrusion load is more dominant at lower extrusion temperature for all given extrusion ratios and punch velocities.Besides this,higher extrusion ratios require higher process temperatures to obtain the lower extrusion load.Also,it was observed that the increase in the extrusion speed causes a significant increase in the forming load for all extrusion ratios and extrusion temperatures.展开更多
The flow behavior of Ti-55511 alloy was studied by hot compression tests at temperatures of 973−1123 K and strain rates of 0.01−10 s^(−1).Strain-compensated Arrhenius(SCA)and back-propagation artificial neural network...The flow behavior of Ti-55511 alloy was studied by hot compression tests at temperatures of 973−1123 K and strain rates of 0.01−10 s^(−1).Strain-compensated Arrhenius(SCA)and back-propagation artificial neural network(BPANN)methods were selected to model the constitutive relationship,and the models were further evaluated by statistical analysis and cross-validation.The stress−strain data extended by two models were implanted into finite element to simulate hot compression test.The results indicate that the flow stress is sensitive to deformation temperature and strain rate,and increases with increasing strain rate and decreasing temperature.Both the SCA model fitted by quintic polynomial and the BPANN model with 12 neurons can describe the flow behaviors,but the fitting accuracy of BPANN is higher than that of SCA.Sixteen cross-validation tests also confirm that the BPANN model has high prediction accuracy.Both models are effective and feasible in simulation,but BPANN model is superior in accuracy.展开更多
The existing methods for extracting the arrival time and amplitude of ultrasonic echo cannot eff ectively avoid the local interference of ultrasonic signals while drilling,which leads to poor accuracy of the echo arri...The existing methods for extracting the arrival time and amplitude of ultrasonic echo cannot eff ectively avoid the local interference of ultrasonic signals while drilling,which leads to poor accuracy of the echo arrival time and amplitude extracted by an ultrasonic imaging logging-while-drilling tool.In this study,a demodulation algorithm is used to preprocess the ultrasonic simulation signals while drilling,and we design a backpropagation neural network model to fit the relationship between the waveform data and time and amplitude.An ultrasonic imaging logging model is established,and the finite element simulation software is used for forward modeling.The response under diff erent measurement conditions is simulated by changing the model parameters,which are used as the input layer of the neural network model;The ultrasonic echo signal is considered as a low-frequency signal modulated by a high-frequency carrier signal,and a low-pass fi lter is designed to remove the high-frequency signal and obtain the low-frequency envelope signal.Then the amplitude of the envelope signal and its corresponding time are extracted as an output layer of the neural network model.By comparing the application eff ects of the various training methods,we fi nd that the conjugate gradient descent method is the most suitable method for solving the neural network model.The performance of the neural network model is tested using 11 groups of simulation test data,which verify the eff ectiveness of the model and lay the foundation for further practical application.展开更多
A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up a...A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up and then experimentally verified.And the relation between depth increment and the minimum thickness tmin as well as its location was analyzed through the FEM model.Afterwards,the variation of depth increments was defined.The designed part was divided into three areas according to the main deformation mechanism,with Di(i=1,2) representing the two dividing locations.And three different values of depth increment,Δzi(i=1,2,3) were utilized for the three areas,respectively.Additionally,an orthogonal test was established to research the relation between the five process parameters(D and Δz) and tmin as well as its location.The result shows that Δz2 has the most significant influence on the thickness distribution for the corresponding area is the largest one.Finally,a single evaluating indicator,taking into account of both tmin and its location,was formatted with a linear weighted model.And the process parameters were optimized through a genetic algorithm integrated with an artificial neural network based on the evaluating index.The result shows that the proposed algorithm is satisfactory for the optimization of variable depth increment.展开更多
A basic optimization principle of Artificial Neural Network—the Lagrange Programming Neural Network (LPNN) model for solving elastoplastic finite element problems is presented. The nonlinear problems of mechanics are...A basic optimization principle of Artificial Neural Network—the Lagrange Programming Neural Network (LPNN) model for solving elastoplastic finite element problems is presented. The nonlinear problems of mechanics are represented as a neural network based optimization problem by adopting the nonlinear function as nerve cell transfer function. Finally, two simple elastoplastic problems are numerically simulated. LPNN optimization results for elastoplastic problem are found to be comparable to traditional Hopfield neural network optimization model.展开更多
In order to design the press bend forming path of aircraft integral panels,a novel optimization method was proposed, which integrates FEM equivalent model based on previous study,the artificial neural network response...In order to design the press bend forming path of aircraft integral panels,a novel optimization method was proposed, which integrates FEM equivalent model based on previous study,the artificial neural network response surface,and the genetic algorithm.First,a multi-step press bend forming FEM equivalent model was established,with which the FEM experiments designed with Taguchi method were performed.Then,the BP neural network response surface was developed with the sample data from the FEM experiments.Furthermore,genetic algorithm was applied with the neural network response surface as the objective function. Finally,verification was carried out on a simple curvature grid-type stiffened panel.The forming error of the panel formed with the optimal path is only 0.098 39 and the calculating efficiency has been improved by 77%.Therefore,this novel optimization method is quite efficient and indispensable for the press bend forming path designing.展开更多
In the processes of manufacturing, MT (machine tools) plays an important role in the manufacture of work pieces with complex and high dimensional and geometric accuracy. Much of the errors of a machine tool are thos...In the processes of manufacturing, MT (machine tools) plays an important role in the manufacture of work pieces with complex and high dimensional and geometric accuracy. Much of the errors of a machine tool are those which are thermally induced which are from internal and external heat sources acting on the machine. In this paper, a methodology for determining and analyzing the thermal deformation of machine tools using FEM (finite element method) and ANN (artificial neural networks) is presented. After modeling the machine using FEM is defined the location of the heat sources, it is possible to obtain the temperature gradient and the corresponding thermal deformation at predetermined periods. Results obtained with simulations using the software NX.7.5 showed that this methodology is an effective tool in determining the thermal deformation of the machine, correlating the temperature reading at strategic points with volumetric deformation at the tool tip. Therefore, the thermal analysis of the errors in the pair tool part can be established. After training and validation process, the network will be able to make the prediction of thermal errors just stating the temperature values of specific points of each heat source, providing a way for compensation of thermally induced errors.展开更多
A new back-analysis method of ground stress is proposed with comprehensive consideration of influence of topography, geology and nonlinear physical mechanical properties of rock on ground stress. This method based on ...A new back-analysis method of ground stress is proposed with comprehensive consideration of influence of topography, geology and nonlinear physical mechanical properties of rock on ground stress. This method based on non-uniform rational B-spline (NURBS) technology provides the means to build a refined three-dimensional finite element model with more accurate meshing under complex terrain and geological conditions. Meanwhile, this method is a back-analysis of ground stress with combination of multivariable linear regression model and neural network (ANN) model. Firstly, the regression model is used to fit approximately boundary loads. Regarding the regressed loads as mean value, some sets of boundary loads with the same interval are constructed according to the principle of orthogonal design, to calculate the corresponding ground stress at the observation positions using finite element method. The results (boundary loads and the corresponding ground stress) are added to the samples for ANN training. And on this basis, an ANN model is established to implement higher precise back-analysis of initial ground stress. A practical application case shows that the relative error between the inversed ground stress and observed value is mostly less than 10 %, which can meet the need of engineering design and construction requirements.展开更多
基金Project(50175034) supported by the National Natural Science Foundation of China
文摘In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath for ISF. A three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those from the experiment. The springback angle was found to be in accordance with the experimental result, proving the FEM to be effective. A coupled artificial neural networks (ANN) and finite element method technique was developed to simulate and predict springback responses to changes in the processing parameters. A particle swarm optimization (PSO) algorithm was used to optimize the weights and thresholds of the neural network model. The neural network was trained using available FEM simulation data. The results showed that a more accurate prediction of s!oringback can be acquired using the FEM-PSONN model.
文摘The effect of extrusion parameters on the extrusion load for AZ31 magnesium alloy was investigated with the support of numerical methods.With this regard,the process temperature,extrusion ratio,friction factor and punch velocity were selected as main parameters for the experiments.Besides,the experimental results were analyzed by using the finite element method(FEM)and artificial neural network(ANN)method to build a numerical model for predicting the forming load.All the experimental and numerical results were compared to each other and it was concluded from the results that the effect of friction factor on the extrusion load is more dominant at lower extrusion temperature for all given extrusion ratios and punch velocities.Besides this,higher extrusion ratios require higher process temperatures to obtain the lower extrusion load.Also,it was observed that the increase in the extrusion speed causes a significant increase in the forming load for all extrusion ratios and extrusion temperatures.
基金financial supports from the National Natural Science Foundation of China(No.51871242)Guangdong Province Key-Area Research and Development Program,China(No.2019B010943001)。
文摘The flow behavior of Ti-55511 alloy was studied by hot compression tests at temperatures of 973−1123 K and strain rates of 0.01−10 s^(−1).Strain-compensated Arrhenius(SCA)and back-propagation artificial neural network(BPANN)methods were selected to model the constitutive relationship,and the models were further evaluated by statistical analysis and cross-validation.The stress−strain data extended by two models were implanted into finite element to simulate hot compression test.The results indicate that the flow stress is sensitive to deformation temperature and strain rate,and increases with increasing strain rate and decreasing temperature.Both the SCA model fitted by quintic polynomial and the BPANN model with 12 neurons can describe the flow behaviors,but the fitting accuracy of BPANN is higher than that of SCA.Sixteen cross-validation tests also confirm that the BPANN model has high prediction accuracy.Both models are effective and feasible in simulation,but BPANN model is superior in accuracy.
基金funded by the Sinopec Engineering Technology Research InstituteThe name of the project is the Research and Development of Drilling Wall Ultrasonic Imaging System(No.PE19011-1)。
文摘The existing methods for extracting the arrival time and amplitude of ultrasonic echo cannot eff ectively avoid the local interference of ultrasonic signals while drilling,which leads to poor accuracy of the echo arrival time and amplitude extracted by an ultrasonic imaging logging-while-drilling tool.In this study,a demodulation algorithm is used to preprocess the ultrasonic simulation signals while drilling,and we design a backpropagation neural network model to fit the relationship between the waveform data and time and amplitude.An ultrasonic imaging logging model is established,and the finite element simulation software is used for forward modeling.The response under diff erent measurement conditions is simulated by changing the model parameters,which are used as the input layer of the neural network model;The ultrasonic echo signal is considered as a low-frequency signal modulated by a high-frequency carrier signal,and a low-pass fi lter is designed to remove the high-frequency signal and obtain the low-frequency envelope signal.Then the amplitude of the envelope signal and its corresponding time are extracted as an output layer of the neural network model.By comparing the application eff ects of the various training methods,we fi nd that the conjugate gradient descent method is the most suitable method for solving the neural network model.The performance of the neural network model is tested using 11 groups of simulation test data,which verify the eff ectiveness of the model and lay the foundation for further practical application.
文摘A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up and then experimentally verified.And the relation between depth increment and the minimum thickness tmin as well as its location was analyzed through the FEM model.Afterwards,the variation of depth increments was defined.The designed part was divided into three areas according to the main deformation mechanism,with Di(i=1,2) representing the two dividing locations.And three different values of depth increment,Δzi(i=1,2,3) were utilized for the three areas,respectively.Additionally,an orthogonal test was established to research the relation between the five process parameters(D and Δz) and tmin as well as its location.The result shows that Δz2 has the most significant influence on the thickness distribution for the corresponding area is the largest one.Finally,a single evaluating indicator,taking into account of both tmin and its location,was formatted with a linear weighted model.And the process parameters were optimized through a genetic algorithm integrated with an artificial neural network based on the evaluating index.The result shows that the proposed algorithm is satisfactory for the optimization of variable depth increment.
基金Project (No. 10102010) supported by the National Natural Science Foundation of China
文摘A basic optimization principle of Artificial Neural Network—the Lagrange Programming Neural Network (LPNN) model for solving elastoplastic finite element problems is presented. The nonlinear problems of mechanics are represented as a neural network based optimization problem by adopting the nonlinear function as nerve cell transfer function. Finally, two simple elastoplastic problems are numerically simulated. LPNN optimization results for elastoplastic problem are found to be comparable to traditional Hopfield neural network optimization model.
基金Project(20091102110021)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘In order to design the press bend forming path of aircraft integral panels,a novel optimization method was proposed, which integrates FEM equivalent model based on previous study,the artificial neural network response surface,and the genetic algorithm.First,a multi-step press bend forming FEM equivalent model was established,with which the FEM experiments designed with Taguchi method were performed.Then,the BP neural network response surface was developed with the sample data from the FEM experiments.Furthermore,genetic algorithm was applied with the neural network response surface as the objective function. Finally,verification was carried out on a simple curvature grid-type stiffened panel.The forming error of the panel formed with the optimal path is only 0.098 39 and the calculating efficiency has been improved by 77%.Therefore,this novel optimization method is quite efficient and indispensable for the press bend forming path designing.
文摘In the processes of manufacturing, MT (machine tools) plays an important role in the manufacture of work pieces with complex and high dimensional and geometric accuracy. Much of the errors of a machine tool are those which are thermally induced which are from internal and external heat sources acting on the machine. In this paper, a methodology for determining and analyzing the thermal deformation of machine tools using FEM (finite element method) and ANN (artificial neural networks) is presented. After modeling the machine using FEM is defined the location of the heat sources, it is possible to obtain the temperature gradient and the corresponding thermal deformation at predetermined periods. Results obtained with simulations using the software NX.7.5 showed that this methodology is an effective tool in determining the thermal deformation of the machine, correlating the temperature reading at strategic points with volumetric deformation at the tool tip. Therefore, the thermal analysis of the errors in the pair tool part can be established. After training and validation process, the network will be able to make the prediction of thermal errors just stating the temperature values of specific points of each heat source, providing a way for compensation of thermally induced errors.
基金Innovative Research Groups of the National Natural Science Foundation of China (No.51021004)National Science Foundation of China (No. 51079096)Program for New Century Excellent Talents in University (No. NCET-08-0391)
文摘A new back-analysis method of ground stress is proposed with comprehensive consideration of influence of topography, geology and nonlinear physical mechanical properties of rock on ground stress. This method based on non-uniform rational B-spline (NURBS) technology provides the means to build a refined three-dimensional finite element model with more accurate meshing under complex terrain and geological conditions. Meanwhile, this method is a back-analysis of ground stress with combination of multivariable linear regression model and neural network (ANN) model. Firstly, the regression model is used to fit approximately boundary loads. Regarding the regressed loads as mean value, some sets of boundary loads with the same interval are constructed according to the principle of orthogonal design, to calculate the corresponding ground stress at the observation positions using finite element method. The results (boundary loads and the corresponding ground stress) are added to the samples for ANN training. And on this basis, an ANN model is established to implement higher precise back-analysis of initial ground stress. A practical application case shows that the relative error between the inversed ground stress and observed value is mostly less than 10 %, which can meet the need of engineering design and construction requirements.