该文描述带有矩量序列{v_m}_0~∞■C^(q×q)的完全不确定Hamburger矩阵矩量问题:v_m=integral from n=-∞to∞x^m dρ(x),m=0,1,…的有限阶解,即该问题的那些解ρ,使得C^(q×q)-值多项式的线性空间P在对应的空间L^2(R,dρ/E(x)...该文描述带有矩量序列{v_m}_0~∞■C^(q×q)的完全不确定Hamburger矩阵矩量问题:v_m=integral from n=-∞to∞x^m dρ(x),m=0,1,…的有限阶解,即该问题的那些解ρ,使得C^(q×q)-值多项式的线性空间P在对应的空间L^2(R,dρ/E(x))内稠密,这里E(x)为在实轴R上取正值的某个数值多项式.作为预备知识,作者考虑所谓广义Akhiezer插值的矩阵变种与它的相关矩阵矩量问题之间的一种关系.展开更多
文摘该文描述带有矩量序列{v_m}_0~∞■C^(q×q)的完全不确定Hamburger矩阵矩量问题:v_m=integral from n=-∞to∞x^m dρ(x),m=0,1,…的有限阶解,即该问题的那些解ρ,使得C^(q×q)-值多项式的线性空间P在对应的空间L^2(R,dρ/E(x))内稠密,这里E(x)为在实轴R上取正值的某个数值多项式.作为预备知识,作者考虑所谓广义Akhiezer插值的矩阵变种与它的相关矩阵矩量问题之间的一种关系.