The effect of realistic topology configuration of intercellular connections on the response ability in coupled cell system is numerically investigated by using the Hindmarsh-Rose model. For the proper coupling intensi...The effect of realistic topology configuration of intercellular connections on the response ability in coupled cell system is numerically investigated by using the Hindmarsh-Rose model. For the proper coupling intensity, we set the control parameter to be near the critical value, and the external stimulus is introduced to the first cell in coupled system. It is found that, on one hand, when the cells are coupled with some proper topological structures, the external stimulus could transmit through the system, and shows better response ability and higher sensitivity. On the other hand, the influence of topological configuration on the synchronous ability and selection effect of neural system are also discussed. Our results display that the topology of coupled system may play an important role in the process of signal propagation, which could help us to understand the coordinated performance of cells in tissue.展开更多
The influences of power spinning process parameters on the mechanical properties of spinning parts were analyzed with an SXD100/3-CNC numerical control power spinning machine.The unidirectional tensile tests were carr...The influences of power spinning process parameters on the mechanical properties of spinning parts were analyzed with an SXD100/3-CNC numerical control power spinning machine.The unidirectional tensile tests were carried out.Based on the experimental data,a ternary quadratic regression equation was established by orthogonal experiment.The Ramberg-Osgood constitutive model of tin-bronze connecting rod bushing was obtained.Referred to the constitutive relation of macroscopic incremental,the incremental elastoplastic constitutive relation of spinning parts was deduced based on the Mises yield criterion and kinematic hardening model.The results can be applied to the elastoplastic analysis in finite element numerical simulation.展开更多
The microstructure and mechanical properties of Mg-10.1Gd-3.74Y-0.25Zr (mass fraction, %) alloy (GW104 alloy) cast by metal mould casting (MMC) and lost foam casting (LFC) were evaluated, respectively. It is r...The microstructure and mechanical properties of Mg-10.1Gd-3.74Y-0.25Zr (mass fraction, %) alloy (GW104 alloy) cast by metal mould casting (MMC) and lost foam casting (LFC) were evaluated, respectively. It is revealed that different forming modes do not influence the phase composition of as-cast alloy. In the as-cast specimens, the microstructures are similar and composed of α-Mg solid solution, eutectic compound of α-Mg+Mg 24 (Gd, Y) 5 and cuboid-shaped Mg 5 (Gd, Y) phase; whereas the average grain size of the alloy produced by metal mould casting is smaller than that by lost foam casting. The eutectic compound of the alloy is completely dissolved after solution treatment at 525 ℃for 6 h, while the Mg 5 (Gd, Y) phase still exists after solution treatment. After peak-ageing, the lost foam cast alloy exhibits the maximum ultimate tensile strength of 285 MPa, and metal mould cast specimen 325 MPa at room temperature, while the tensile yield strengths of them are comparable. It can be concluded that GW104 alloy cast by lost foam casting possesses similar microstructure and evidently lower mechanical strength compared with metal mould cast alloy, due to slow solidification rate and proneness to form shrinkage porosities during lost foam casting process.展开更多
Molecular dynamics simulations were carried out to study the configuration energy and radial distribution functions of mmonium dihydrogen phosphate solution at different temperatures. The dihydrogen phosphate ion was ...Molecular dynamics simulations were carried out to study the configuration energy and radial distribution functions of mmonium dihydrogen phosphate solution at different temperatures. The dihydrogen phosphate ion was treated as a seven-site model and the ammonium ion was regarded as a five-site model, while a simple-point-charge model for water molecule. An unusually local particle number density fluctuation was observed in the system at saturation temperature. It can be found that the potential energy increases slowly with the temperature from 373 K to 404 K, which indicates that the ammonium dihydrogen phosphate has partly decomposed. The radial distribution function between the hydrogen atom of ammonium cation and the oxygen atom of dihydrogen phosphate ion at three different temperatures shows obvious difference, which indicates that the average H-bond number changes obviously with the temperature. The temperature has an influence on the combination between hydrogen atoms and phosphorus atoms of dihydrogen phosphate ion and there are much more growth units at saturated solutions.展开更多
The structural, elastic, electronic and optical properties for U3Si2-type AlSc2Si2 compound under pressure were systematically investigated by using the first-principles calculations. The values of elastic constants a...The structural, elastic, electronic and optical properties for U3Si2-type AlSc2Si2 compound under pressure were systematically investigated by using the first-principles calculations. The values of elastic constants and elastic moduli indicate that AlSc2Si2 keeps mechanical stability under high pressure. The mechanical properties of AISc2Si2 are compared with those of Al3Sc. The results indicate that AlSc2Si2 is harder than AI3Sc. Anisotropic constant AU and 3D curved surface of elastic moduli predict that AISc2Si2 is obviously anisotropic under pressure. The electronic structure of AlSc2Si2 exhibits metallic character and the metallicity decreases with the elevated pressure. In addition, optical properties as a function of pressure were calculated and analyzed. The present work provides theoretical support for further experimental work and industrial applications.展开更多
There is a growing interest in the study of structures and properties of biomolecules in gas phase. Applications of force fields are highly desirable for the computational efficiency of the gas phase study. To help th...There is a growing interest in the study of structures and properties of biomolecules in gas phase. Applications of force fields are highly desirable for the computational efficiency of the gas phase study. To help the selection of force fields, the performances of five repre- sentative force fields for gaseous neutral, protonated, deprotonated and capped amino acids are systematically examined and compared. The tested properties include relative conforma- tional energies, energy differences between cis and trans structures, the number and strength of predicted hydrogen bonds, and the quality of the optimized structures. The results of BHandHLYP/6-311++G(d,p) are used as the references. GROMOS53A6 and ENCADS are found to perform poorly for gaseous biomoleeules, while the performance of AMBER99SB, CHARMM27 and OPLSAA/L are comparable when applicable. Considering the general availability of the force field parameters, CHARMM27 is the most recommended, followed by OPLSAA/L, for the study of biomolecules in gas phase展开更多
Cam profiles play an important part in the performance of cam mechanisms. Syntheses of cam profile designs and dynamics of cam designs are studied at first. Then, a cam profile design optimization model based on the s...Cam profiles play an important part in the performance of cam mechanisms. Syntheses of cam profile designs and dynamics of cam designs are studied at first. Then, a cam profile design optimization model based on the six order classical spline and single DOF(degree of freedom) dynamic model of single-dwell cam mechanisms is developed. And dynamic constraints such as jumps and vibrations of followers are considered. This optimization model, with many advantages such as universalities of applications, conveniences to operations and good performances in improving kinematic and dynamic properties of cam mechanisms, is good except for the discontinuity of jerks at the end knots of cam profiles which will cause vibrations of cam systems. However, the optimization is improved by combining the six order classical spline with general polynomial spline which is the so-called "trade-offs". Finally, improved optimization is proven to have a better performance in designing cam profiles.展开更多
To scientifically evaluate the equipment system of systems(SoS)contribution rate,a contribution rate calculation method based on a structural equation model(SEM)is proposed in this paper.The connotation and evaluation...To scientifically evaluate the equipment system of systems(SoS)contribution rate,a contribution rate calculation method based on a structural equation model(SEM)is proposed in this paper.The connotation and evaluation process of the equipment SoS contribution rate were redefined and standardized.To solve the existing problems in the application of the original contribution rate formula,a modified contribution rate calculation formula is proposed.Finally,the contribution rate evaluation index was divided into latent and explicit variables.The measurement and structural equations in the SEM were used to calculate and analyze the latent variables.The simulation results show that the number of defense lines of air defense weapon equipment has a greater impact on the linear configuration than the group configuration.When the number of K-type air defense weapons is sufficient,the two-layer linear configuration should be adopted with 20 air defense weapon systems.When the number of K-type air defense weapons is insufficient,the single-layer group configuration should be adopted with 12 air defense weapon systems.展开更多
The aluminum matrix syntactic foam was fabricated by pressure infiltration technique,and the filling material is syntactic foam material with fly ash cenosphere as the main component and polyurethane foam as the binde...The aluminum matrix syntactic foam was fabricated by pressure infiltration technique,and the filling material is syntactic foam material with fly ash cenosphere as the main component and polyurethane foam as the binder.Split Hopkinson pressure bar(SHPB)dynamic compression and quasi-static tests were carried out to examine the compressive response of syntactic foam in this study.Then the dynamic constitutive model was established.Results show that the compressive stress-strain curve of syntactic aluminum foam is similar to that of other metallic foam materials:both kinds of aluminum matrix syntactic foams have strain rate effect,and the syntactic foam has higher compressive strength and energy absorption than the same density aluminum foams.However,due to the different sizes of cenospheres,the dynamic compression results of two kinds of syntactic foams are different,and the energy absorption effect of syntactic foam with small size under dynamic impact is the best.In the range of strain rate and density studied experimentally,the curves of constitutive model fit well with the curves of experimental data.展开更多
The contact angle phenomena and wetting behavior of fatty acids,alcohols and ester used as additives in lubricants onto the rolled copper foil(RCF)surface were studied by the static sessile drop method.Semi-empirical ...The contact angle phenomena and wetting behavior of fatty acids,alcohols and ester used as additives in lubricants onto the rolled copper foil(RCF)surface were studied by the static sessile drop method.Semi-empirical quantum-chemical method studies on the contact angle of these compounds onto surface using several structural parameters were carried out.Molecular refractivity as well as several structural parameters were adopted in the development of quantitative structure-property relationships(QSPR)using genetic function approximation(GFA)statistical analysis method.The results show that quantum parameters are a better choice when predicting the contact angle and wettability of lubricants onto the RCF surface.Contact angle of the compounds serves as a function of their viscosity,interfacial tension,and physicochemical parameters.Alog P,molecular refractivity,molecular flexibility,total molecular mass,solvent surface area,element count,total energy and dipole are the most sensitive ones among the major contributing parameters.Notably,studies of lubricants on the RCF surfaces allow wetting theories to be tested down to the microcosmic scale,which can bring about new insight to predict wettability of lubricants onto RCF surface.展开更多
Structured models of kinds of mind-readers are explanatory tools in philosophy and psychology. Structure means that a structure like a theory with certain properties organizes the model of a kind of a reader. Structur...Structured models of kinds of mind-readers are explanatory tools in philosophy and psychology. Structure means that a structure like a theory with certain properties organizes the model of a kind of a reader. Structured models serve to explain mind-reading capabilities in opposition to pure behavior-reading capabilities by explicating properties of the structure that bring on specific capabilities of mind-reading. Typically, grades of fulfilling reading-capabilities are related to grades of rationality. But it is unclear: (1) when we are legitimated to title a reader a mind-reader or behavior-reader, and (2) how the kinds of readers are related with each other (if they can be related by a measure). I argue that we know a reader if we can construct it and this gives legitimation. But it is unclear how to construct border-cases of readers, for example, minimal mind-readers. Should minimal mind-readers be constructed on the base of "reduced" mind-readers, or should they be constructed as "enriched" behavior-readers? This is the specific question concerning the relations between readers the essay deals with by trying to reduce a maximal mind-reader by Craig-reduction. Because this kind of reduction-method fails, constructing specific kinds of mind-readers needs further research.展开更多
Based on the boundary condition of field engineering, numerical simulations of28 conditions of existing diffusers of 3 structure types were investigated by ComputationalFluid Dynamics software package, and there were ...Based on the boundary condition of field engineering, numerical simulations of28 conditions of existing diffusers of 3 structure types were investigated by ComputationalFluid Dynamics software package, and there were the problems of larger structure resistanceand lower diffusing efficiency of these diffusers by analysis of CFD results.Thestructure outlines of the energy-saving diffuser were constructed by the application ofstream function and potential function superimposing.On the basis of numerical simulationsof energy-saving diffusers of 5 area-enlarging ratios, structural resistances and diffusingefficiencies of 5 energy-saving diffusers were comparatively analyzed, and therange from 2.00 to 2.31 of the rational area-enlarging ratio of energy-saving diffusers wasderived.The optimization area-enlarging ratio of the energy-saving diffuser was presently2.28 through comparable analysis.From the above, the results show that the coefficient ofperformance of the energy-saving diffuser is better than 3 existing diffusers.展开更多
The elements of crop capacity structure of 13 summer characteristics in 33 winter wheat varieties, qualitative three-regularity and quantitative eight-regularity are investigated through the application of systematic ...The elements of crop capacity structure of 13 summer characteristics in 33 winter wheat varieties, qualitative three-regularity and quantitative eight-regularity are investigated through the application of systematic approach. The principle of triadness applied in a language, in a genetic code and other codes is used, i.e. the logic homology is employed. The purpose are (1) to show the use of a systematic approach to the analysis of elements of crop capacity structure of winter wheat; (2) to analyze efficiency, the years of harvests and winter hardiness; (3) to find the way of selection and varieties assessment in terms of the elements efficiency. The quantitative compatibility as the highest with the sign "+" and the lowest with the sign "-" in terms of elements efficiency gives eight types of crop capacities. The type of crop capacity structure "+++" can serve as a full (higher) measure of a variety adaptableness and optimality of technologies. The triad of three characteristics as a type-"+++" in which the first sign is the quantity of ears (QE); the second is a quantity of grains (QG); the third is the weight of grains (WG) creates the highest level of crop capacity.展开更多
In order to understand the relationship between the mechanical property and the effect of bleaching and dyeing to the soybean protein fibers(SPF),four mechanical models are chosen.The tensile and relaxation property o...In order to understand the relationship between the mechanical property and the effect of bleaching and dyeing to the soybean protein fibers(SPF),four mechanical models are chosen.The tensile and relaxation property of the soybean protein fibers are analyzed.The tensile and relaxation curves are fitted with the suitable model.It shows that the relaxation property of SPF is in accordance with the standard linear solid model.Estimates of the Hookean spring modulus at 8% and at 10% are different,so some structural modifications could be produced by the strain.Bleached fibers show a higher level of relaxation than raw fibers and dyed fibers.Bleaching has a remarkable influence on decreasing tenacity at break for each test modality.Knotted and looped modalities decrease fiber tenacity remarkably in all three samples.展开更多
文摘The effect of realistic topology configuration of intercellular connections on the response ability in coupled cell system is numerically investigated by using the Hindmarsh-Rose model. For the proper coupling intensity, we set the control parameter to be near the critical value, and the external stimulus is introduced to the first cell in coupled system. It is found that, on one hand, when the cells are coupled with some proper topological structures, the external stimulus could transmit through the system, and shows better response ability and higher sensitivity. On the other hand, the influence of topological configuration on the synchronous ability and selection effect of neural system are also discussed. Our results display that the topology of coupled system may play an important role in the process of signal propagation, which could help us to understand the coordinated performance of cells in tissue.
基金Project(2012011023-2)supported by the Natural Science Foundation of Shanxi Province,China
文摘The influences of power spinning process parameters on the mechanical properties of spinning parts were analyzed with an SXD100/3-CNC numerical control power spinning machine.The unidirectional tensile tests were carried out.Based on the experimental data,a ternary quadratic regression equation was established by orthogonal experiment.The Ramberg-Osgood constitutive model of tin-bronze connecting rod bushing was obtained.Referred to the constitutive relation of macroscopic incremental,the incremental elastoplastic constitutive relation of spinning parts was deduced based on the Mises yield criterion and kinematic hardening model.The results can be applied to the elastoplastic analysis in finite element numerical simulation.
基金Project(2007CB613704)supported by the National Basic Research Program of China
文摘The microstructure and mechanical properties of Mg-10.1Gd-3.74Y-0.25Zr (mass fraction, %) alloy (GW104 alloy) cast by metal mould casting (MMC) and lost foam casting (LFC) were evaluated, respectively. It is revealed that different forming modes do not influence the phase composition of as-cast alloy. In the as-cast specimens, the microstructures are similar and composed of α-Mg solid solution, eutectic compound of α-Mg+Mg 24 (Gd, Y) 5 and cuboid-shaped Mg 5 (Gd, Y) phase; whereas the average grain size of the alloy produced by metal mould casting is smaller than that by lost foam casting. The eutectic compound of the alloy is completely dissolved after solution treatment at 525 ℃for 6 h, while the Mg 5 (Gd, Y) phase still exists after solution treatment. After peak-ageing, the lost foam cast alloy exhibits the maximum ultimate tensile strength of 285 MPa, and metal mould cast specimen 325 MPa at room temperature, while the tensile yield strengths of them are comparable. It can be concluded that GW104 alloy cast by lost foam casting possesses similar microstructure and evidently lower mechanical strength compared with metal mould cast alloy, due to slow solidification rate and proneness to form shrinkage porosities during lost foam casting process.
文摘Molecular dynamics simulations were carried out to study the configuration energy and radial distribution functions of mmonium dihydrogen phosphate solution at different temperatures. The dihydrogen phosphate ion was treated as a seven-site model and the ammonium ion was regarded as a five-site model, while a simple-point-charge model for water molecule. An unusually local particle number density fluctuation was observed in the system at saturation temperature. It can be found that the potential energy increases slowly with the temperature from 373 K to 404 K, which indicates that the ammonium dihydrogen phosphate has partly decomposed. The radial distribution function between the hydrogen atom of ammonium cation and the oxygen atom of dihydrogen phosphate ion at three different temperatures shows obvious difference, which indicates that the average H-bond number changes obviously with the temperature. The temperature has an influence on the combination between hydrogen atoms and phosphorus atoms of dihydrogen phosphate ion and there are much more growth units at saturated solutions.
基金Projects(L2014051,LT2014004)supported by the Program for Scientific Technology Plan of the Educational Department of Liaoning Province,China
文摘The structural, elastic, electronic and optical properties for U3Si2-type AlSc2Si2 compound under pressure were systematically investigated by using the first-principles calculations. The values of elastic constants and elastic moduli indicate that AlSc2Si2 keeps mechanical stability under high pressure. The mechanical properties of AISc2Si2 are compared with those of Al3Sc. The results indicate that AlSc2Si2 is harder than AI3Sc. Anisotropic constant AU and 3D curved surface of elastic moduli predict that AISc2Si2 is obviously anisotropic under pressure. The electronic structure of AlSc2Si2 exhibits metallic character and the metallicity decreases with the elevated pressure. In addition, optical properties as a function of pressure were calculated and analyzed. The present work provides theoretical support for further experimental work and industrial applications.
文摘There is a growing interest in the study of structures and properties of biomolecules in gas phase. Applications of force fields are highly desirable for the computational efficiency of the gas phase study. To help the selection of force fields, the performances of five repre- sentative force fields for gaseous neutral, protonated, deprotonated and capped amino acids are systematically examined and compared. The tested properties include relative conforma- tional energies, energy differences between cis and trans structures, the number and strength of predicted hydrogen bonds, and the quality of the optimized structures. The results of BHandHLYP/6-311++G(d,p) are used as the references. GROMOS53A6 and ENCADS are found to perform poorly for gaseous biomoleeules, while the performance of AMBER99SB, CHARMM27 and OPLSAA/L are comparable when applicable. Considering the general availability of the force field parameters, CHARMM27 is the most recommended, followed by OPLSAA/L, for the study of biomolecules in gas phase
文摘Cam profiles play an important part in the performance of cam mechanisms. Syntheses of cam profile designs and dynamics of cam designs are studied at first. Then, a cam profile design optimization model based on the six order classical spline and single DOF(degree of freedom) dynamic model of single-dwell cam mechanisms is developed. And dynamic constraints such as jumps and vibrations of followers are considered. This optimization model, with many advantages such as universalities of applications, conveniences to operations and good performances in improving kinematic and dynamic properties of cam mechanisms, is good except for the discontinuity of jerks at the end knots of cam profiles which will cause vibrations of cam systems. However, the optimization is improved by combining the six order classical spline with general polynomial spline which is the so-called "trade-offs". Finally, improved optimization is proven to have a better performance in designing cam profiles.
基金The National Social Science Foundation Military Science Project(No.16GJ003-068).
文摘To scientifically evaluate the equipment system of systems(SoS)contribution rate,a contribution rate calculation method based on a structural equation model(SEM)is proposed in this paper.The connotation and evaluation process of the equipment SoS contribution rate were redefined and standardized.To solve the existing problems in the application of the original contribution rate formula,a modified contribution rate calculation formula is proposed.Finally,the contribution rate evaluation index was divided into latent and explicit variables.The measurement and structural equations in the SEM were used to calculate and analyze the latent variables.The simulation results show that the number of defense lines of air defense weapon equipment has a greater impact on the linear configuration than the group configuration.When the number of K-type air defense weapons is sufficient,the two-layer linear configuration should be adopted with 20 air defense weapon systems.When the number of K-type air defense weapons is insufficient,the single-layer group configuration should be adopted with 12 air defense weapon systems.
基金National Natural Science Foundation of China(No.11602233)。
文摘The aluminum matrix syntactic foam was fabricated by pressure infiltration technique,and the filling material is syntactic foam material with fly ash cenosphere as the main component and polyurethane foam as the binder.Split Hopkinson pressure bar(SHPB)dynamic compression and quasi-static tests were carried out to examine the compressive response of syntactic foam in this study.Then the dynamic constitutive model was established.Results show that the compressive stress-strain curve of syntactic aluminum foam is similar to that of other metallic foam materials:both kinds of aluminum matrix syntactic foams have strain rate effect,and the syntactic foam has higher compressive strength and energy absorption than the same density aluminum foams.However,due to the different sizes of cenospheres,the dynamic compression results of two kinds of syntactic foams are different,and the energy absorption effect of syntactic foam with small size under dynamic impact is the best.In the range of strain rate and density studied experimentally,the curves of constitutive model fit well with the curves of experimental data.
基金the financial assistance provided by the Introducing the Talent Research Start-up Fund(No.YKJ201706)the National Natural Science Foundation of China(No.51474025)
文摘The contact angle phenomena and wetting behavior of fatty acids,alcohols and ester used as additives in lubricants onto the rolled copper foil(RCF)surface were studied by the static sessile drop method.Semi-empirical quantum-chemical method studies on the contact angle of these compounds onto surface using several structural parameters were carried out.Molecular refractivity as well as several structural parameters were adopted in the development of quantitative structure-property relationships(QSPR)using genetic function approximation(GFA)statistical analysis method.The results show that quantum parameters are a better choice when predicting the contact angle and wettability of lubricants onto the RCF surface.Contact angle of the compounds serves as a function of their viscosity,interfacial tension,and physicochemical parameters.Alog P,molecular refractivity,molecular flexibility,total molecular mass,solvent surface area,element count,total energy and dipole are the most sensitive ones among the major contributing parameters.Notably,studies of lubricants on the RCF surfaces allow wetting theories to be tested down to the microcosmic scale,which can bring about new insight to predict wettability of lubricants onto RCF surface.
文摘Structured models of kinds of mind-readers are explanatory tools in philosophy and psychology. Structure means that a structure like a theory with certain properties organizes the model of a kind of a reader. Structured models serve to explain mind-reading capabilities in opposition to pure behavior-reading capabilities by explicating properties of the structure that bring on specific capabilities of mind-reading. Typically, grades of fulfilling reading-capabilities are related to grades of rationality. But it is unclear: (1) when we are legitimated to title a reader a mind-reader or behavior-reader, and (2) how the kinds of readers are related with each other (if they can be related by a measure). I argue that we know a reader if we can construct it and this gives legitimation. But it is unclear how to construct border-cases of readers, for example, minimal mind-readers. Should minimal mind-readers be constructed on the base of "reduced" mind-readers, or should they be constructed as "enriched" behavior-readers? This is the specific question concerning the relations between readers the essay deals with by trying to reduce a maximal mind-reader by Craig-reduction. Because this kind of reduction-method fails, constructing specific kinds of mind-readers needs further research.
基金Supported by the National Natural Science Foundation of China(50974060)the Scientific Research Fund of Hunan Provincial Education Department(09CY014)the Doctoral Fund of Hunan University of Science and Technology
文摘Based on the boundary condition of field engineering, numerical simulations of28 conditions of existing diffusers of 3 structure types were investigated by ComputationalFluid Dynamics software package, and there were the problems of larger structure resistanceand lower diffusing efficiency of these diffusers by analysis of CFD results.Thestructure outlines of the energy-saving diffuser were constructed by the application ofstream function and potential function superimposing.On the basis of numerical simulationsof energy-saving diffusers of 5 area-enlarging ratios, structural resistances and diffusingefficiencies of 5 energy-saving diffusers were comparatively analyzed, and therange from 2.00 to 2.31 of the rational area-enlarging ratio of energy-saving diffusers wasderived.The optimization area-enlarging ratio of the energy-saving diffuser was presently2.28 through comparable analysis.From the above, the results show that the coefficient ofperformance of the energy-saving diffuser is better than 3 existing diffusers.
文摘The elements of crop capacity structure of 13 summer characteristics in 33 winter wheat varieties, qualitative three-regularity and quantitative eight-regularity are investigated through the application of systematic approach. The principle of triadness applied in a language, in a genetic code and other codes is used, i.e. the logic homology is employed. The purpose are (1) to show the use of a systematic approach to the analysis of elements of crop capacity structure of winter wheat; (2) to analyze efficiency, the years of harvests and winter hardiness; (3) to find the way of selection and varieties assessment in terms of the elements efficiency. The quantitative compatibility as the highest with the sign "+" and the lowest with the sign "-" in terms of elements efficiency gives eight types of crop capacities. The type of crop capacity structure "+++" can serve as a full (higher) measure of a variety adaptableness and optimality of technologies. The triad of three characteristics as a type-"+++" in which the first sign is the quantity of ears (QE); the second is a quantity of grains (QG); the third is the weight of grains (WG) creates the highest level of crop capacity.
文摘In order to understand the relationship between the mechanical property and the effect of bleaching and dyeing to the soybean protein fibers(SPF),four mechanical models are chosen.The tensile and relaxation property of the soybean protein fibers are analyzed.The tensile and relaxation curves are fitted with the suitable model.It shows that the relaxation property of SPF is in accordance with the standard linear solid model.Estimates of the Hookean spring modulus at 8% and at 10% are different,so some structural modifications could be produced by the strain.Bleached fibers show a higher level of relaxation than raw fibers and dyed fibers.Bleaching has a remarkable influence on decreasing tenacity at break for each test modality.Knotted and looped modalities decrease fiber tenacity remarkably in all three samples.