鉴于传统径基函数网络(radial basis function network,简称RBFN)构造策略的不足,提出了基于偏最小二乘法(partial least squares,简称PLS)和遗传算法(genetic algorithms,简称GAs)的RBFN构造策略和一种更有效的径基宽度取值方法.在这...鉴于传统径基函数网络(radial basis function network,简称RBFN)构造策略的不足,提出了基于偏最小二乘法(partial least squares,简称PLS)和遗传算法(genetic algorithms,简称GAs)的RBFN构造策略和一种更有效的径基宽度取值方法.在这个集成构造策略中,PLS克服了K-Means算法求取径基易陷入局部最优的弊病,并使合成径基比由正交算法获取的径基更具代表性;而所提出的径基宽度取值方法和GAs则为网络性能和结构的实质性改善与优化提供了保障.实验证实了基于PLS和GAs的RBFN构造策略及所提出的径基宽度取值方法的优越性、可靠性和有效性.展开更多
文摘鉴于传统径基函数网络(radial basis function network,简称RBFN)构造策略的不足,提出了基于偏最小二乘法(partial least squares,简称PLS)和遗传算法(genetic algorithms,简称GAs)的RBFN构造策略和一种更有效的径基宽度取值方法.在这个集成构造策略中,PLS克服了K-Means算法求取径基易陷入局部最优的弊病,并使合成径基比由正交算法获取的径基更具代表性;而所提出的径基宽度取值方法和GAs则为网络性能和结构的实质性改善与优化提供了保障.实验证实了基于PLS和GAs的RBFN构造策略及所提出的径基宽度取值方法的优越性、可靠性和有效性.