构建基于激光雷达(light detection and ranging,LiDAR)数据的林分平均高反演模型可为无瓣海桑长势的动态监测提供技术支撑。以北部湾茅尾海无瓣海桑红树林湿地为对象,基于机载LiDAR提取的高度和强度参数变量,借助决定系数R^(2)、均方...构建基于激光雷达(light detection and ranging,LiDAR)数据的林分平均高反演模型可为无瓣海桑长势的动态监测提供技术支撑。以北部湾茅尾海无瓣海桑红树林湿地为对象,基于机载LiDAR提取的高度和强度参数变量,借助决定系数R^(2)、均方根误差RMSE、赤池信息准则AIC和贝叶斯信息准则BIC指标对随机森林、支持向量机以及神经网络3种模型进行了优选,在最优模型的支持下估算了研究区的红树林平均高及其空间分布状况。结果表明,研究区无瓣海桑的林分平均高介于3.90~11.58 m之间,其中树高较高、胸径较大的无瓣海桑主要分布在潮沟附近以及研究区中部。在估算无瓣海桑的林分平均高时,贡献率最大的是样方点云高度最大值,其次是75%~99%分位数高度。随机森林回归模型在估测林分平均高模型中的精度最高(R^(2)=0.9381,RMSE=0.58 m,AIC=80.50和BIC=49.05);支持向量机模型次之,该模型在测试阶段的R^(2)为0.7665,RMSE为1.27 m;神经网络模型的拟合效果最差。总体而言,随机森林模型是研究区无瓣海桑林分平均高反演的最优模型。展开更多
森林高度是反映森林数量和质量的重要指标,是森林经营管理的重要基础数据,准确获取森林高度信息一直是林业遥感研究的目标。本研究以广西高峰林场的105块地面实测样地数据和机载激光雷达(Light detection and ranging,LiDAR)数据为基础...森林高度是反映森林数量和质量的重要指标,是森林经营管理的重要基础数据,准确获取森林高度信息一直是林业遥感研究的目标。本研究以广西高峰林场的105块地面实测样地数据和机载激光雷达(Light detection and ranging,LiDAR)数据为基础,从点云数据中提取35个特征变量,分别采用支持向量机-递归特征消除法(SVM-RFE)、轻量级梯度提升机(LightGBM)和主成分分析(PCA)法进行特征筛选,并结合参数模型(LR)和非参数模型(RFR、KNN)对林分平均高进行反演。研究结果表明,不同特征选择方法和估测模型的组合精度差异较大。其中,利用LightGBM进行特征筛选结合KNN回归反演效果最佳,建模的R^(2)和RMSE分别为0.83和1.64 m,验证的R^(2)和RMSE分别为0.81和1.56 m。此外,在SVM-RFE、LightGBM和PCA这3种特征筛选方法中LightGBM的效果最好,无论在RFR模型还是在KNN模型中均能得到较高的R^(2),优于SVM-RFE和PCA。展开更多