Web-like ZnO nanostructures have been successfully synthesized using the potassium nitrate route at various temperatures to simplify conventional preparation methods. The structures and morphologies of the as-prepared...Web-like ZnO nanostructures have been successfully synthesized using the potassium nitrate route at various temperatures to simplify conventional preparation methods. The structures and morphologies of the as-prepared products were characterized by X-ray powder diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). The results showed that the reaction temperature was an important parameter, and that there was a feedback effect between nano-structure and growth parameters, combined with in situ micro-calorimetry, the reaction rate constants of the three systems were found to have been: 2.43×10-6, 2.70×10-8 and 3.12×10-7s-1 respectively. Furthermore, based on the relationship governing the potential differences between nanoand bulk ZnO, thermodynamic functions of nano-ZnO such as standard molar entropy (Sm,ZnO(nano)), standard molar Gibbs free energy of formation (△rGm,ZnO(nano)), and standard molar enthalpy of formation (△rHm,ZnO(nano)) have been calculated by the electrochemical method.展开更多
基金supported by the National Natural Science Foundation of China (20373072)Construct Program of the Key Discipline in Hunan Province,China (Applied Chemistry)~~
基金supported by the National Natural Science Foundation of China (20963001,21273050)Guangxi Natural Science Foundation of China (0991001z,2011GXNSFB018021)
文摘Web-like ZnO nanostructures have been successfully synthesized using the potassium nitrate route at various temperatures to simplify conventional preparation methods. The structures and morphologies of the as-prepared products were characterized by X-ray powder diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). The results showed that the reaction temperature was an important parameter, and that there was a feedback effect between nano-structure and growth parameters, combined with in situ micro-calorimetry, the reaction rate constants of the three systems were found to have been: 2.43×10-6, 2.70×10-8 and 3.12×10-7s-1 respectively. Furthermore, based on the relationship governing the potential differences between nanoand bulk ZnO, thermodynamic functions of nano-ZnO such as standard molar entropy (Sm,ZnO(nano)), standard molar Gibbs free energy of formation (△rGm,ZnO(nano)), and standard molar enthalpy of formation (△rHm,ZnO(nano)) have been calculated by the electrochemical method.