针对标签特定特征多标签学习算法(multi-label learning with label-specific features,LIFT)未能在聚类以及分类阶段考虑标签相关性问题,提出一种基于标签相关性的标签特定特征多标签学习算法(multi-label learning with label-specifi...针对标签特定特征多标签学习算法(multi-label learning with label-specific features,LIFT)未能在聚类以及分类阶段考虑标签相关性问题,提出一种基于标签相关性的标签特定特征多标签学习算法(multi-label learning with label-specific features via label correlations,LFLC).将标签空间加入特征空间进行聚类构建分类模型,采用考虑标签相关性的聚类集成技术为每个标签构造标签特定特征,使用相关性矩阵构建无向完全图并挖掘图中标签集合相关性,通过树集成表达标签间多种不同结构的强相关性.在试验部分,采用涵盖不同领域的10个数据集,以Hamming Loss、Ranking Loss、One-error、Coverage、Average Precision和macroAUC为评估指标,进行了参数敏感性分析和统计假设检验.结果表明:结合聚类集成与标签间强相关性的LFLC算法较其他对比多标签算法整体上能取得较好的效果.展开更多
多标签学习已成功应用于文本分类、图像识别等各个领域。流行的技术包括提取标签特定特征、利用标签相关性等。提出带有标签相关性的预测调整算法PALC(Prediction adjusting with label correlation)将标签相关性融入串行并行神经网络...多标签学习已成功应用于文本分类、图像识别等各个领域。流行的技术包括提取标签特定特征、利用标签相关性等。提出带有标签相关性的预测调整算法PALC(Prediction adjusting with label correlation)将标签相关性融入串行并行神经网络。一方面,采用新颖的、更有效的串行并行神经网络架构来替代常见的显式特征提取或压缩感知方法;另一方面,考虑用固有的标签矩阵内的相关性来计算相关性矩阵,并以流形正则的方式优化分类器。对10个基准数据集与7种流行算法进行比较,结果表明PALC在3大排名指标下均有优势。展开更多
针对现有多标签学习算法较少兼顾标签间关联性和不平衡性的问题,提出一种同时考虑多标签间相关性与多标签不平衡问题的学习模型(A Multi-label Learning Model based on Label Correlation and Imbalance,MLCI).该学习模型针对每个标签...针对现有多标签学习算法较少兼顾标签间关联性和不平衡性的问题,提出一种同时考虑多标签间相关性与多标签不平衡问题的学习模型(A Multi-label Learning Model based on Label Correlation and Imbalance,MLCI).该学习模型针对每个标签类别,通过耦合其他标签类别以考量标签间的关联性,并降低缓解标签间不均衡比率,MLCI是一个将当前标签的二类不平衡学习器和多个与其他标签耦合的多类不平衡学习器结合的集成分类器.采用7种常用的多标签算法作为对比算法,针对yeast、scene、emotions和CAL500这4个开放数据集进行分类处理.实验结果表明,MLCI相比其他对比算法,在精度均值(Average-Precision)、排序损失(Ranking-Loss)、宏观平均AUC(Macro-Averaging AUC)和微观平均AUC(Micro-Averaging AUC) 4个性能评估指标上总体占明显优势.展开更多
针对现有高校学生社交媒体评论情感分析易忽视标签相关性,以及多使用单一粒度特征学习文本表示的问题,提出一种融合标签相关性的高校学生情感分析模型。首先,利用双向Transformer编码器(Bidirectional Encoder Representations from Tra...针对现有高校学生社交媒体评论情感分析易忽视标签相关性,以及多使用单一粒度特征学习文本表示的问题,提出一种融合标签相关性的高校学生情感分析模型。首先,利用双向Transformer编码器(Bidirectional Encoder Representations from Transformers,BERT)获取词向量表示,通过池化和双向长短期记忆网络(Bidirectional Long-Short Term Memory,Bi-LSTM)分别提取句子级与单词级的文本表示。然后,基于共现关系学习标签之间的相关性,通过句子级、单词级的“文本-标签”注意力获取特定于标签的特征表示,将特征进行融合,使用sigmoid分类器计算文本属于每一类情感标签的概率。实验结果表明,所提模型与对比模型相比,在汉明损失、排序损失和标签排序平均精度方面均有提高,验证了融合不同粒度文本特征与标签相关性对高校学生情感分析的有效性。展开更多
文摘针对标签特定特征多标签学习算法(multi-label learning with label-specific features,LIFT)未能在聚类以及分类阶段考虑标签相关性问题,提出一种基于标签相关性的标签特定特征多标签学习算法(multi-label learning with label-specific features via label correlations,LFLC).将标签空间加入特征空间进行聚类构建分类模型,采用考虑标签相关性的聚类集成技术为每个标签构造标签特定特征,使用相关性矩阵构建无向完全图并挖掘图中标签集合相关性,通过树集成表达标签间多种不同结构的强相关性.在试验部分,采用涵盖不同领域的10个数据集,以Hamming Loss、Ranking Loss、One-error、Coverage、Average Precision和macroAUC为评估指标,进行了参数敏感性分析和统计假设检验.结果表明:结合聚类集成与标签间强相关性的LFLC算法较其他对比多标签算法整体上能取得较好的效果.
文摘多标签学习已成功应用于文本分类、图像识别等各个领域。流行的技术包括提取标签特定特征、利用标签相关性等。提出带有标签相关性的预测调整算法PALC(Prediction adjusting with label correlation)将标签相关性融入串行并行神经网络。一方面,采用新颖的、更有效的串行并行神经网络架构来替代常见的显式特征提取或压缩感知方法;另一方面,考虑用固有的标签矩阵内的相关性来计算相关性矩阵,并以流形正则的方式优化分类器。对10个基准数据集与7种流行算法进行比较,结果表明PALC在3大排名指标下均有优势。
文摘针对现有多标签学习算法较少兼顾标签间关联性和不平衡性的问题,提出一种同时考虑多标签间相关性与多标签不平衡问题的学习模型(A Multi-label Learning Model based on Label Correlation and Imbalance,MLCI).该学习模型针对每个标签类别,通过耦合其他标签类别以考量标签间的关联性,并降低缓解标签间不均衡比率,MLCI是一个将当前标签的二类不平衡学习器和多个与其他标签耦合的多类不平衡学习器结合的集成分类器.采用7种常用的多标签算法作为对比算法,针对yeast、scene、emotions和CAL500这4个开放数据集进行分类处理.实验结果表明,MLCI相比其他对比算法,在精度均值(Average-Precision)、排序损失(Ranking-Loss)、宏观平均AUC(Macro-Averaging AUC)和微观平均AUC(Micro-Averaging AUC) 4个性能评估指标上总体占明显优势.
文摘针对现有高校学生社交媒体评论情感分析易忽视标签相关性,以及多使用单一粒度特征学习文本表示的问题,提出一种融合标签相关性的高校学生情感分析模型。首先,利用双向Transformer编码器(Bidirectional Encoder Representations from Transformers,BERT)获取词向量表示,通过池化和双向长短期记忆网络(Bidirectional Long-Short Term Memory,Bi-LSTM)分别提取句子级与单词级的文本表示。然后,基于共现关系学习标签之间的相关性,通过句子级、单词级的“文本-标签”注意力获取特定于标签的特征表示,将特征进行融合,使用sigmoid分类器计算文本属于每一类情感标签的概率。实验结果表明,所提模型与对比模型相比,在汉明损失、排序损失和标签排序平均精度方面均有提高,验证了融合不同粒度文本特征与标签相关性对高校学生情感分析的有效性。