Some analyses of the electromagnetic form factors of the nucleon and some analyses of the nucleon-nucleon potential favor a large coupling of the φ meson to nucleons. This is frequently quoted by advocates of a large...Some analyses of the electromagnetic form factors of the nucleon and some analyses of the nucleon-nucleon potential favor a large coupling of the φ meson to nucleons. This is frequently quoted by advocates of a large ss component of the nucleon. It is shown that such large OZI-violating couplings are incompatible with data on φproduction in backward direction via nucleon exchange.展开更多
The potential energy surface of O(^1D)+C2H5Cl reaction was studied using QCISD(T)/6- 311++G(d,p)//MP2/6-31G(d,p) method. The calculations reveal an insertion-elimination mechanism. The insertion reaction o...The potential energy surface of O(^1D)+C2H5Cl reaction was studied using QCISD(T)/6- 311++G(d,p)//MP2/6-31G(d,p) method. The calculations reveal an insertion-elimination mechanism. The insertion reaction of O(^1D) and C2H5Cl produces two energy-rich intermediates, IM1 and IM2, which subsequently decompose into various products. The calculations of the branching ratios of various products formed through the two intermediates were carried out using RRKM (Rice-Ramsperger-Kassel-Marcus) theory at the collision energies of 0, 20.9, 41.8, 62.7, 83.6, 104.5, and 125.4 kJ/mol. HCl is the main decomposition product for IM1; CH2OH is the main decomposition product for IM2. Since IM1 is more stable than IM2, HCl is probably the main product of the O(^1D)+C2H5Cl reaction.展开更多
Configuration-constrained calculations of potential-energy surfaces for ^292 122 show the occurrence of multiquasiparticle high-K isomeric state at oblate superdeformation. Such state could play a unique role in super...Configuration-constrained calculations of potential-energy surfaces for ^292 122 show the occurrence of multiquasiparticle high-K isomeric state at oblate superdeformation. Such state could play a unique role in superheavy nuclei, with possible long life time from enhanced difficulty in fission due to additional barrier at oblate deformation, retardation in a decay due to unpaired nucleons, and hindrance in γ-ray transition due to K forbiddenness.展开更多
文摘Some analyses of the electromagnetic form factors of the nucleon and some analyses of the nucleon-nucleon potential favor a large coupling of the φ meson to nucleons. This is frequently quoted by advocates of a large ss component of the nucleon. It is shown that such large OZI-violating couplings are incompatible with data on φproduction in backward direction via nucleon exchange.
基金ACKNOWLEDGMENT This work was supported Science Foundation of China by the National Natural (No.50772107).
文摘The potential energy surface of O(^1D)+C2H5Cl reaction was studied using QCISD(T)/6- 311++G(d,p)//MP2/6-31G(d,p) method. The calculations reveal an insertion-elimination mechanism. The insertion reaction of O(^1D) and C2H5Cl produces two energy-rich intermediates, IM1 and IM2, which subsequently decompose into various products. The calculations of the branching ratios of various products formed through the two intermediates were carried out using RRKM (Rice-Ramsperger-Kassel-Marcus) theory at the collision energies of 0, 20.9, 41.8, 62.7, 83.6, 104.5, and 125.4 kJ/mol. HCl is the main decomposition product for IM1; CH2OH is the main decomposition product for IM2. Since IM1 is more stable than IM2, HCl is probably the main product of the O(^1D)+C2H5Cl reaction.
基金Supported by the National Natural Science Foundation of China under Grant No.11205120
文摘Configuration-constrained calculations of potential-energy surfaces for ^292 122 show the occurrence of multiquasiparticle high-K isomeric state at oblate superdeformation. Such state could play a unique role in superheavy nuclei, with possible long life time from enhanced difficulty in fission due to additional barrier at oblate deformation, retardation in a decay due to unpaired nucleons, and hindrance in γ-ray transition due to K forbiddenness.