期刊文献+
共找到175篇文章
< 1 2 9 >
每页显示 20 50 100
梅尔频率倒谱系数在声带息肉手术前后嗓音分析中的价值研究
1
作者 刘茉 葛鑫颖 +2 位作者 赵晓畅 郝青青 李祖飞 《中国耳鼻咽喉颅底外科杂志》 CAS CSCD 2024年第2期102-105,共4页
目的 本研究拟通过提取患者嗓音中的梅尔频率倒谱系数(MFCC)指标,探讨其在声带息肉手术前后嗓音分析中的临床价值。方法 回顾性分析于2018年1月—2019年8月行声带息肉手术且术前及术后1个月均行嗓音评估的患者41例,男31例,女10例;平均年... 目的 本研究拟通过提取患者嗓音中的梅尔频率倒谱系数(MFCC)指标,探讨其在声带息肉手术前后嗓音分析中的临床价值。方法 回顾性分析于2018年1月—2019年8月行声带息肉手术且术前及术后1个月均行嗓音评估的患者41例,男31例,女10例;平均年龄(42.9±11.4)岁。另选取无声嘶且无声带病变的正常受试者21例作为基线对照。使用基于Python编程语言的librosa语音处理包进行MFCC特征提取,分别提取每位患者的MFCC均值,MFCC方差与MFCC标准差,使用配对样本t检验比较声带息肉手术前后上述各MFCC特征的差异。结果 声带息肉患者术后MFCC均值1.25±1.01、MFCC方差561.34±154.98及MFCC标准差21.74±4.03比术前MFCC均值6.81±2.05、MFCC方差1 019.66±295.87及MFCC标准差34.37±6.63显著下降,差异具有统计学意义(t=18.596,P=0.000;t=10.338,P=0.000;t=11.852,P=0.000)。声带息肉组患者术后1个月其MFCC均值、MFCC方差及MFCC标准差与正常受试者相比差异均无统计学意义,表明绝大部分声带息肉患者术后嗓音得到良好的恢复。结论 本研究首次探索了MFCC在声带息肉手术前后嗓音分析中的价值,MFCC各特征可作为评估声带息肉术后嗓音恢复的指标。 展开更多
关键词 声带息肉 声嘶 梅尔频率倒谱系数 嗓音分析 手术
下载PDF
基于脉搏波频域梅尔频率倒谱系数特征的高血压危险分层预测模型
2
作者 齐晨浩 杨晶东 +2 位作者 邱泽浩 尧明慧 燕海霞 《海军军医大学学报》 CAS CSCD 北大核心 2024年第10期1226-1240,共15页
目的 为改进基于人工智能技术高血压时域脉搏波分类模型精度低、泛化性能差的问题,提出一种基于融合注意力机制的频域脉搏波预测模型。方法 首先将时域脉搏波转换为频域梅尔频率倒谱系数特征,增强脉搏波区分度,采用时间卷积网络与Transf... 目的 为改进基于人工智能技术高血压时域脉搏波分类模型精度低、泛化性能差的问题,提出一种基于融合注意力机制的频域脉搏波预测模型。方法 首先将时域脉搏波转换为频域梅尔频率倒谱系数特征,增强脉搏波区分度,采用时间卷积网络与Transformer 结构提取脉搏波深层特征,并将自注意力机制与选择性内核注意力进行决策融合,提取脉搏波关联特征,并采用Floodings正则化方法间接控制训练损失,防止过拟合发生。针对上海中医药大学附属龙华医院及上海市中西医结合医院提供的527例临床脉诊数据,进行5折交叉验证实验。此外,采用梯度提升决策树算法统计脉搏波频域特征的贡献率排名,分析影响模型分类精度的关键因素,为中医临床辅助诊断提供参考价值。结果 本研究提出的模型分类评估指标准确度、F1值、精确率、召回率和AUC值分别为0.939 6、0.924 9、0.940 9、0.929 5和0.993 4。脉搏波的静态特征、一阶差分和二阶差分系数的贡献率相对均衡,说明高血压危险程度不仅与脉搏波的静态特征相关,也应当考虑脉搏波的动态特征。结论 与典型脉搏波分类模型相比,本研究提出的模型具有较高的分类精度和泛化性能。 展开更多
关键词 高血压 危险分层 梅尔频率倒谱系数 时间卷积网络 TRANSFORMER
下载PDF
基于梅尔频率倒谱系数的语音清晰度DRT识别
3
作者 马成龙 焦俊清 +4 位作者 焦富清 王杰 陈巧特 谢武俊 李军 《信息化研究》 2024年第2期63-68,共6页
语音清晰度在通信终端、设备系统语音识别方面具有重要意义。本文对110dB噪声干扰下采集到的语音信号进行谱减法降噪,双门限端点检测提取发音字段,然后提取梅尔频率倒谱系数(MFCC),再将其进行差分计算,得到一阶和二阶分量,结合短时能量... 语音清晰度在通信终端、设备系统语音识别方面具有重要意义。本文对110dB噪声干扰下采集到的语音信号进行谱减法降噪,双门限端点检测提取发音字段,然后提取梅尔频率倒谱系数(MFCC),再将其进行差分计算,得到一阶和二阶分量,结合短时能量作为语音信号的特征参数,最后通过动态时间归整(DTW)进行相似度识别。实验表明,本文算法对汉语清晰度诊断押韵测试(DRT)字表的测试结果高达92.90%,有良好的识别率。 展开更多
关键词 语音清晰度 谱减法 端点检测 梅尔频率倒谱系数 动态时间归整 汉语清晰度诊断押韵测试
下载PDF
基于梅尔频率倒谱系数与翻转梅尔频率倒谱系数的说话人识别方法 被引量:21
4
作者 胡峰松 张璇 《计算机应用》 CSCD 北大核心 2012年第9期2542-2544,共3页
为提高说话人识别系统的识别率,提出了基于梅尔频率倒谱系数(MFCC)与翻转梅尔频率倒谱系数(IMFCC)为特征参数的特征提取新方法。该方法利用Fisher准则将MFCC和IMFCC相结合,构造了一种混合特征参数。实验结果表明,新的混合特征参数与MFC... 为提高说话人识别系统的识别率,提出了基于梅尔频率倒谱系数(MFCC)与翻转梅尔频率倒谱系数(IMFCC)为特征参数的特征提取新方法。该方法利用Fisher准则将MFCC和IMFCC相结合,构造了一种混合特征参数。实验结果表明,新的混合特征参数与MFCC相比,在纯净语音库及噪声环境中均具有较好的识别性能。 展开更多
关键词 说话人识别 梅尔频率倒谱系数 翻转梅尔频率倒谱系数 FISHER准则 高斯混合模型
下载PDF
基于梅尔频率倒谱系数与动态时间规整的安卓声纹解锁系统 被引量:11
5
作者 陈锦飞 徐欣 《计算机工程》 CAS CSCD 北大核心 2017年第2期201-205,共5页
安卓设备通常采用数字或图形密码解锁,但此类口令形式的密码安全性不高,而且部分安卓版本存在锁屏绕过漏洞的问题。为此,设计一种利用用户声纹特征的安卓解锁系统。采用梅尔频率倒谱系数提取声纹特征,使用动态时间规整算法进行文本相关... 安卓设备通常采用数字或图形密码解锁,但此类口令形式的密码安全性不高,而且部分安卓版本存在锁屏绕过漏洞的问题。为此,设计一种利用用户声纹特征的安卓解锁系统。采用梅尔频率倒谱系数提取声纹特征,使用动态时间规整算法进行文本相关的声纹模式匹配,并结合安卓NDK技术实现快速声纹识别。实验结果表明,该系统具有较高的解锁成功率和较快的解锁速度,相比数字或图形解锁,声纹解锁安全性更高,用户体验更好。 展开更多
关键词 梅尔频率倒谱系数 动态时间规整 声纹识别 安卓系统 声纹解锁
下载PDF
基于梅尔频率倒谱系数和支持向量机的汽车鸣喇叭声识别 被引量:7
6
作者 陈东 黄智鹏 《科学技术与工程》 北大核心 2021年第11期4486-4491,共6页
使用违法鸣笛辅助执法设备监测城市交通中汽车鸣喇叭事件的发生,可以有效地治理扰民的喇叭噪声,汽车鸣喇叭声的识别方法是其关键。为了准确高效地在交通噪声里识别出汽车鸣喇叭声,采用支持向量机(support vector machine,SVM)作为喇叭... 使用违法鸣笛辅助执法设备监测城市交通中汽车鸣喇叭事件的发生,可以有效地治理扰民的喇叭噪声,汽车鸣喇叭声的识别方法是其关键。为了准确高效地在交通噪声里识别出汽车鸣喇叭声,采用支持向量机(support vector machine,SVM)作为喇叭声和交通噪声的二分类器,针对汽车喇叭声的谐波特征分布特点,提取其梅尔频率倒谱系数(Mel frequency cepstrum coefficient,MFCC)作为特征向量,并分析MFCC的梅尔滤波器个数及特征维数对识别效果的影响。实验结果表明,通过增加MFCC特征中梅尔滤波器个数及特征维数可以改善识别效果,信噪比越低越明显。 展开更多
关键词 汽车鸣喇叭声识别 梅尔频率倒谱系数 支持向量机 特征识别
下载PDF
基于梅尔频率倒谱系数的音频分类研究 被引量:7
7
作者 屈晓渊 崔青 《电子设计工程》 2022年第9期82-87,92,共7页
梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)是一种符合人耳听觉特征,并与频率呈非线性对应关系的频谱特征,广泛应用在语音识别、音频特征分析等方面。对于目前广泛使用的通过单一特征进行音频分类的方法,存在分类准确... 梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)是一种符合人耳听觉特征,并与频率呈非线性对应关系的频谱特征,广泛应用在语音识别、音频特征分析等方面。对于目前广泛使用的通过单一特征进行音频分类的方法,存在分类准确度低、处理速度慢等方面的不足,提出了基于梅尔频率倒谱的音频分类算法,该算法对音频设定采样率,获取音频的时间序列,并根据时间序列提取梅尔频率倒谱系数特征,将获取的二维特征值进行数据拟合、标准化处理。构建多层卷积神经网络模型,将标准化处理后的梅尔频率倒谱系数特征作为网络的输入,通过交叉熵验证的方法,对模型的输出进行分类。通过实验数据可知,梅尔频率倒谱系数特征通过多层卷积网络处理后,分类结果准确率达到92.8%,使用模型进行分类时,速度达到每个样本7 ms的耗时,模型能对音频进行准确快速的分类。 展开更多
关键词 梅尔频率倒谱系数 音乐特征 音频分类 多层卷积神经网络
下载PDF
基于梅尔频率倒谱系数的球磨机料位软测量 被引量:2
8
作者 寄珊珊 郭磊 +1 位作者 续欣莹 阎高伟 《计算机仿真》 CSCD 北大核心 2016年第2期277-280,325,共5页
在球磨机料位测量优化的研究中,针对球磨机音频信号存在非线性及利用梅尔频率倒谱系数(MFCC)方法提取到的特征参数中存在冗余信息的问题,采用MFCC监督等距映射(S-Isomap)和极限学习机(ELM)建立球磨机料位软测量模型。首先,采用MFCC方法... 在球磨机料位测量优化的研究中,针对球磨机音频信号存在非线性及利用梅尔频率倒谱系数(MFCC)方法提取到的特征参数中存在冗余信息的问题,采用MFCC监督等距映射(S-Isomap)和极限学习机(ELM)建立球磨机料位软测量模型。首先,采用MFCC方法得到音频信号的特征参数并进行参数重组。然后利用鲁棒的S-Isomap进行降维提取特征,以克服不相关信息对测量精度的影响;最后采用ELM建立所得特征与料位信息的回归模型。实验结果表明,以梅尔频率倒谱系数作为音频信号的特征参数序列能有效测量球磨机料位,且改进方法具有较高的测量精度。 展开更多
关键词 球磨机料位 梅尔频率倒谱系数 监督等距映射 极限学习机 软测量
下载PDF
基于梅尔频率倒谱系数与短时能量的低信噪比语音端点检测 被引量:9
9
作者 柏顺 颜夕宏 +2 位作者 张生平 陈建飞 张胜 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2021年第2期117-120,共4页
低信噪比环境下语音信号的端点检测在语音识别与通信等领域具有重要意义,目前低信噪比环境下的端点检测还存在效率低、识别率不高等问题.本文在分析梅尔频率倒谱系数(MFCC)和短时能量在端点检测中应用的基础上,提出将MFCC前三维度分量相... 低信噪比环境下语音信号的端点检测在语音识别与通信等领域具有重要意义,目前低信噪比环境下的端点检测还存在效率低、识别率不高等问题.本文在分析梅尔频率倒谱系数(MFCC)和短时能量在端点检测中应用的基础上,提出将MFCC前三维度分量相加(MFCCa),再与短时能量相除(梅尔能量比)作为语音特征参数的语音端点检测测度,最后利用模糊C均值聚类算法自适应确定双门限阈值进行端点检测.选取TIMIT语音库中的50条语音信号进行实验,结果表明:在信噪比为5 dB、0 dB、-5 dB的噪声环境下,与能零比、谱熵等算法相比,本算法端点识别准确率均有所提高,其中在-5 dB信噪比环境下提升了约30%. 展开更多
关键词 语音端点检测 梅尔频率倒谱系数 短时能量 模糊C均值聚类 低信噪比
下载PDF
基于短时能量和梅尔频率倒谱系数的球磨机工况识别 被引量:2
10
作者 田原 刘琼 《烧结球团》 北大核心 2020年第3期39-43,共5页
针对球磨机在粉磨作业过程中,交替出现的空磨、正常磨和饱磨3种工作状态,而球磨机磨音信号特征复杂,单一特征提取方法不能较好地识别球磨机工作状况的这一问题,提出了1种将时域的短时能量与频域的梅尔频率倒谱系数相组合作为新的磨音信... 针对球磨机在粉磨作业过程中,交替出现的空磨、正常磨和饱磨3种工作状态,而球磨机磨音信号特征复杂,单一特征提取方法不能较好地识别球磨机工作状况的这一问题,提出了1种将时域的短时能量与频域的梅尔频率倒谱系数相组合作为新的磨音信号的特征提取方法。首先,通过分析在不同工作状况下球磨机磨音信号在时频域中表现的特性,提出通过扩展特征参数来改善反映信号特征,并设计相应的时频域组合来提取特征;最后将该方法运用到分类识别隐马尔可夫模型中,并建立球磨机工况识别系统。实验表明,采用该组合的特征提取方法的识别率相对于单个的时域短时能量和频域梅尔频率倒谱系数要高,可以有效地提升球磨机工况系统的识别性能。 展开更多
关键词 球磨机磨音 特征提取 短时能量 梅尔频率倒谱系数 隐马尔可夫模型
下载PDF
说话人识别中的Mel特征频率倒谱系数 被引量:12
11
作者 曹辉 徐晨 +1 位作者 赵晓 吴胜举 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第2期203-208,共6页
目的研究语音特征梅尔频率倒谱系数(MFCC)的选取对说话人识别系统性能的影响。方法采用基于平均影响值(MIV)的支持向量机(SVM)方法研究了说话人识别中的梅尔频率倒谱系数各维倒谱分量对于识别分类的贡献度。结果选择具有代表性的特征向... 目的研究语音特征梅尔频率倒谱系数(MFCC)的选取对说话人识别系统性能的影响。方法采用基于平均影响值(MIV)的支持向量机(SVM)方法研究了说话人识别中的梅尔频率倒谱系数各维倒谱分量对于识别分类的贡献度。结果选择具有代表性的特征向量进行说话人分类识别,能得到维数更低、识别率更高的特征参数。结论通过MIV值可判断各维特征参数分量的重要性,选取权重值高的MFCC特征参数来提高系统识别率和缩短系统运行时间。 展开更多
关键词 说话人识别 语音特征参 梅尔频率倒谱系数 支持向量机 平均影响值
下载PDF
基于改进小波包去噪与梅尔倒谱系数的低信噪比交通环境声音识别 被引量:14
12
作者 王若平 李仁仁 +2 位作者 陈达亮 王东 房宇 《科学技术与工程》 北大核心 2019年第36期290-295,共6页
随着自动驾驶汽车研究的不断深入,对其环境感知系统提出了更高的要求。为了使自动驾驶汽车适应更复杂的交通环境,研究了低信噪比声学环境感知技术,提出改进的小波包去噪方法;采用经验模态分解(EMD)的方法改进梅尔频率倒谱系数(MFCC)的提... 随着自动驾驶汽车研究的不断深入,对其环境感知系统提出了更高的要求。为了使自动驾驶汽车适应更复杂的交通环境,研究了低信噪比声学环境感知技术,提出改进的小波包去噪方法;采用经验模态分解(EMD)的方法改进梅尔频率倒谱系数(MFCC)的提取;采用支持向量机(SVM)识别模型完成低信噪比交通环境声音识别。实验结果表明,本文提取的去噪方法提高声音事件信噪比的同时保持声音特征,且对噪声有自适应性;改进的MFCC提取方法一定程度上提高了特征参数的抗噪性能。通过对低信噪比交通环境声音去噪和特征参数优化后,其平均识别率比优化前提高了33.34%,并改变了识别率骤降的趋势。 展开更多
关键词 交通环境声音事件 小波包去噪 经验模态分解 梅尔频率倒谱系数 支持向量机
下载PDF
基于梅尔倒谱系数、深层卷积和Bagging的环境音分类方法 被引量:4
13
作者 王天锐 鲍骞月 秦品乐 《计算机应用》 CSCD 北大核心 2019年第12期3515-3521,共7页
针对传统环境音分类模型对环境音特征提取不充分,以及卷积神经网络用于环境音分类时全连接层易造成过拟合现象的问题,提出了梅尔倒谱系数(MFCC)、深层卷积和Bagging算法相结合的环境音分类方法。首先,针对原始音频文件,利用预加重、加... 针对传统环境音分类模型对环境音特征提取不充分,以及卷积神经网络用于环境音分类时全连接层易造成过拟合现象的问题,提出了梅尔倒谱系数(MFCC)、深层卷积和Bagging算法相结合的环境音分类方法。首先,针对原始音频文件,利用预加重、加窗、离散傅里叶变换、梅尔滤波器转换、离散余弦映射等方法建立梅尔倒谱系数特征模型;然后,将特征模型输入卷积深度网络进行第二次特征提取;最后,借鉴强化学习思想,用Bagging集成算法集成线性判别分析器、支持向量机(SVM)、Softmax回归、XGBoost四个模型,以投票预测的形式对网络输出结果进行预测。实验结果表明,所提方法能够有效提高对环境音的特征提取能力和深层网络在环境音分类上的抗过拟合能力。 展开更多
关键词 环境音分类 梅尔频率倒谱系数 Bagging集成算法 特征提取 深度学习
下载PDF
带式输送机关键音频数据识别研究
14
作者 吴启航 李军霞 +2 位作者 刘少伟 秦志祥 张伟 《煤炭工程》 北大核心 2024年第5期145-151,共7页
针对带式输送机音频数据中存在大量冗余的问题,提出了一种基于改进蜜獾算法(IHBA)优化支持向量机(SVM)的带式输送机关键音频数据识别方法。提取音频数据的梅尔频率倒谱系数作为特征;采用Tent混沌映射增加种群多样性,引入新的密度因子和... 针对带式输送机音频数据中存在大量冗余的问题,提出了一种基于改进蜜獾算法(IHBA)优化支持向量机(SVM)的带式输送机关键音频数据识别方法。提取音频数据的梅尔频率倒谱系数作为特征;采用Tent混沌映射增加种群多样性,引入新的密度因子和黄金正弦机制来克服蜜獾算法(HBA)易陷入局部最优、收敛速度慢及寻优精度低等缺陷,并通过标准测试函数的仿真实验,验证了IHBA性能。采用IHBA优化SVM的参数,将梅尔频率倒谱系数特征输入IHBA-SVM模型中进行识别。结果表明,IHBA-SVM模型能够有效提高带式输送机关键音频数据的识别率。 展开更多
关键词 带式输送机 音频 梅尔频率倒谱系数 改进蜜獾算法 支持向量机
下载PDF
基于自适应GMM阶数与混合特征的说话人识别研究
15
作者 范涛 詹旭 《四川轻化工大学学报(自然科学版)》 CAS 2024年第4期75-83,共9页
针对高斯混合模型(GMM)阶数选取缺陷和说话人特征信息不足的问题,提出了基于自适应GMM阶数和多种语音特征融合的说话人识别算法。首先,通过提取梅尔频率倒谱系数(MFCC)和线性预测梅尔频率倒谱系数(LPMFCC),并根据Fisher准则得到一个17维... 针对高斯混合模型(GMM)阶数选取缺陷和说话人特征信息不足的问题,提出了基于自适应GMM阶数和多种语音特征融合的说话人识别算法。首先,通过提取梅尔频率倒谱系数(MFCC)和线性预测梅尔频率倒谱系数(LPMFCC),并根据Fisher准则得到一个17维的MFCC和LPMFCC参数组合的混合特征参数,以增强说话人的特征信息。然后,根据自适应思想,在K-means聚类算法中计算簇内误差平方和(SSE)。最后,通过肘部法则自适应调整K值,以获得一个最优GMM阶数,使得系统在已有的声纹特征下获得最优的识别效果。结果表明,该算法不仅完善了说话人的特征信息,并且克服了对GMM阶数选取的缺陷。最终结合LPCC和MFCC两种特征算法,融合得到的混合特征LPMFCC+MFCC的识别率相比于LPCC和MFCC提升了26.34%和12.34%。 展开更多
关键词 说话人识别 高斯混合模型 梅尔频率倒谱系数 线性预测梅尔 FISHER准则 自适应
下载PDF
一种基于音频数据特征提取和单分类器的电机异常监测方法
16
作者 李若峰 付卫宁 《电工技术》 2024年第3期183-187,共5页
针对工业现场电机故障样本不足、数据严重不平衡的问题,提出了支持向量数据描述(Support Vector Data Description, SVDD)、自编码器(Auto Encoder, AE)和孤立森林(Isolation Forest)三种分类算法融合的算法,实现了电机声音异常监测。... 针对工业现场电机故障样本不足、数据严重不平衡的问题,提出了支持向量数据描述(Support Vector Data Description, SVDD)、自编码器(Auto Encoder, AE)和孤立森林(Isolation Forest)三种分类算法融合的算法,实现了电机声音异常监测。实验数据采自工业现场,根据拾音器采集的声音信息,提取梅尔频率倒谱系数(Mel Frequency Cepstral Coefficents, MFCC)、梅尔频谱、短时能量、过零率等反映电机运行状况的特征,然后进行特征筛选,去除冗余特征,挑选出最优的特征子集送入单分类器,实现电机的异常监测。实验结果分析表明,提出的方案准确率达到98%,与基于生成对抗单分类网络(Generative Adversarial Single Classification Network, GACN)方案相比提高约5%。 展开更多
关键词 梅尔频率倒谱系数 单分类网络 电机监测 特征提取
下载PDF
TEO能量与Mel倒谱混合参数应用于说话人识别 被引量:4
17
作者 杨瑞田 周萍 杨青 《计算机仿真》 北大核心 2017年第8期215-219,264,共6页
特征提取是说话人识别中非常重要的一个环节,特征提取的结果直接影响系统的识别结果。提出一种将TEO与MFCC及其衍生参数结合的方法,将本文提取的特征参数与传统的MFCC,WMFCC与△MFCC通过GMM-UBM与SVM模型得出结果并比较。并在不同环境... 特征提取是说话人识别中非常重要的一个环节,特征提取的结果直接影响系统的识别结果。提出一种将TEO与MFCC及其衍生参数结合的方法,将本文提取的特征参数与传统的MFCC,WMFCC与△MFCC通过GMM-UBM与SVM模型得出结果并比较。并在不同环境下的进行实验,对算法进行了仿真实现。实验结果表明,在相同噪声背景不同信噪比时与相同信噪比不同的噪声背景这两种情况,提出的方法均得到了较好的结果,在检测纯语音数据时,对融合算法进行仿真实现,识别率也得到了提高。 展开更多
关键词 说话人识别 梅尔频率倒谱系数 高斯混合模型-通用背景模型 联合因子分析
下载PDF
基于特征融合和B-SVM的鸟鸣声识别算法 被引量:1
18
作者 陈晓 曾昭优 《声学技术》 CSCD 北大核心 2024年第1期119-126,共8页
为了实现在野外通过低成本嵌入式系统识别鸟类,提出了基于特征融合和B-SVM的鸟鸣声识别方法。对鸟鸣声信号提取梅尔频率倒谱系数、翻转梅尔频率倒谱系数、短时能量和短时过零率组成特征参数,通过线性判别算法对特征参数进行特征融合。... 为了实现在野外通过低成本嵌入式系统识别鸟类,提出了基于特征融合和B-SVM的鸟鸣声识别方法。对鸟鸣声信号提取梅尔频率倒谱系数、翻转梅尔频率倒谱系数、短时能量和短时过零率组成特征参数,通过线性判别算法对特征参数进行特征融合。利用黑寡妇算法通过测试集对支持向量机模型的核参数和损失值进行优化得到B-SVM模型。利用Xeno-canto鸟鸣声数据集对本文算法进行了测试,结果表明该方法的识别准确率为93.23%。算法维度参数的大小和融合特征维度的高低是影响算法识别效果的重要因素。在相同条件下,文中所提的基于特征融合和B-SVM模型的鸟鸣声识别算法相较于其他特征参数和模型,识别的准确率更高,为野外鸟类识别提供了参考。 展开更多
关键词 鸟鸣声识别 梅尔频率倒谱系数 线性判别算法 黑寡妇优化算法 支持向量机
下载PDF
基于多尺度时序感知网络的课堂语音情感识别方法
19
作者 周菊香 刘金生 +2 位作者 甘健侯 吴迪 李子杰 《计算机应用》 CSCD 北大核心 2024年第5期1636-1643,共8页
语音情感识别近年来在多场景智能系统中得到了广泛应用,也为实现智慧课堂环境下的教学行为智能分析提供了可能。通过课堂语音情感识别技术可以自动识别课堂教学中教师和学生的情感状态,帮助教师了解自己的授课风格并及时掌握学生的课堂... 语音情感识别近年来在多场景智能系统中得到了广泛应用,也为实现智慧课堂环境下的教学行为智能分析提供了可能。通过课堂语音情感识别技术可以自动识别课堂教学中教师和学生的情感状态,帮助教师了解自己的授课风格并及时掌握学生的课堂学习状态,从而达到精准施教的目的。针对课堂语音情感识别任务,首先,收集中小学的课堂实录教学视频,提取音频并进行人工切分和标注,构建了包含6类情感的中小学教学语音情感语料库;其次,基于时序卷积网络(TCN)和交叉门控机制(cross-gated mechanism)设计了双路时序卷积通道,以提取多尺度交叉融合特征;最后,采用动态权重融合策略调整不同尺度特征的贡献度,减少非重要特征对识别结果的干扰,进一步增强模型的表征和学习能力。实验结果表明,所提方法在多个公共数据集上优于TIM-Net(Temporal-aware bI-direction Multi-scaleNetwork)、GM-TCNet(Gated Multi-scale Temporal Convolutional Network)和CTL-MTNet(CapsNet and Transfer Learning-based Mixed Task Net)等先进模型,在真实课堂语音情感识别任务上未加权平均召回率(UAR)和加权平均召回率(WAR)分别达90.58%和90.45%。 展开更多
关键词 语音情感识别 课堂语音 时序卷积网络 交叉门控卷积 梅尔频率倒谱系数
下载PDF
羊咳嗽声的特征参数提取与识别方法 被引量:25
20
作者 宣传忠 武佩 +3 位作者 张丽娜 马彦华 张永安 邬娟 《农业机械学报》 EI CAS CSCD 北大核心 2016年第3期342-348,共7页
为在设施圈养羊只产生呼吸道疾病的初期,通过监测其咳嗽声进行疾病预警和健康状况诊断,以内蒙古地区广泛推广的杜泊羊为例,对杜泊羊的咳嗽声信号进行自动采集和计算机识别,在不增加羊咳嗽声特征参数维数的前提下,提出一种改进的梅尔频... 为在设施圈养羊只产生呼吸道疾病的初期,通过监测其咳嗽声进行疾病预警和健康状况诊断,以内蒙古地区广泛推广的杜泊羊为例,对杜泊羊的咳嗽声信号进行自动采集和计算机识别,在不增加羊咳嗽声特征参数维数的前提下,提出一种改进的梅尔频率倒谱系数(MFCC),试验结果表明,该参数和短时能量、过零率组合的14维特征参数,经过羊咳嗽声隐马尔可夫模型(HMM)识别系统,其识别率、误识别率和总识别率分别达到了86.23%、7.17%和88.43%,该组合特征参数经主成分分析可降到9维,而通过BP神经网络改善的HMM咳嗽声识别系统,对咳嗽声的识别率、误识别率和总识别率分别达到了92.54%、5.37%和95.04%,满足了杜泊羊咳嗽声识别的要求。 展开更多
关键词 杜泊羊 咳嗽声 特征参提取 梅尔频率倒谱系数 隐马尔可夫模型
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部