期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
激光冲击选区强化对2024铝合金叶片振动响应特性的影响 被引量:6
1
作者 吴郑浩 周留成 +2 位作者 张波 阚前华 张旭 《表面技术》 EI CAS CSCD 北大核心 2022年第1期348-357,共10页
目的探究激光冲击强化技术对2024铝合金叶片振动性能的影响,并探寻最理想的冲击参数。方法运用Johnson-Cook动态塑性本构模型模拟激光冲击选区强化过程,对强化后的2024航空铝合金叶片的振动特性进行分析。将2024铝合金在激光冲击强化过... 目的探究激光冲击强化技术对2024铝合金叶片振动性能的影响,并探寻最理想的冲击参数。方法运用Johnson-Cook动态塑性本构模型模拟激光冲击选区强化过程,对强化后的2024航空铝合金叶片的振动特性进行分析。将2024铝合金在激光冲击强化过程中产生的残余应力场和梯度密度分布导入模型,量化激光冲击强化对2024铝合金叶片振动特性的提高效果,研究激光冲击参数对叶片振动响应的影响规律。结果激光冲击强化产生的残余压应力场并非均匀分布在表面,而是只存在于冲击区域,冲击区域外为拉应力。其中,最大残余压应力为273.5 MPa。选取第六阶振型为目标振型,在同样冲击工况下,模拟和实验结果吻合较好。在模型中引入激光冲击强化产生的残余应力与梯度密度结构会使2024铝合金叶片的振动特性发生改变,其中,残余应力对振动特性影响更为显著。结论激光冲击强化工艺调控分析表明,采用较大圆形光斑,施加较大功率密度冲击模型中部,可获得最显著的振动特性改善效果。最适合的激光冲击强化参数可将振动特征频率降低118.87 Hz,将振幅降低94.37%。 展开更多
关键词 2024铝合金 激光冲击强化 振动特性 残余应力场 梯度密度结构
下载PDF
The differential protein and lipid compositions of noncaveolar lipid microdomains and caveolae 被引量:1
2
作者 Yao Yao Shangyu Hong +3 位作者 Hu Zhou Taichang Yuan Rong Zeng Kan Liao 《Cell Research》 SCIE CAS CSCD 2009年第4期497-506,共10页
Morphologically, caveolae and lipid rafts are two different membrane structures. They are often reported to share similar lipid and protein compositions, and are considered to be two subtypes of membrane lipid microdo... Morphologically, caveolae and lipid rafts are two different membrane structures. They are often reported to share similar lipid and protein compositions, and are considered to be two subtypes of membrane lipid microdomains. By modifying sucrose density gradient flotation centrifugation, which is used to isolate lipid microdomains, we were able to separate caveolae and noncaveolar lipid microdomains into two distinct fractions. The caveolar membranes are membrane vesicles of 100-nm diameter, enriched with caveolin-1 and flotillin-1. The noncaveolar lipid microdomains are amorphous membranes and most likely the coalescence of heterogeneous lipid rafts. They are depleted of caveo- lin-1 and are more enriched with cholesterol and sphingolipids than the caveolae. Many membrane proteins, such as insulin-like growth factor-1 receptor (membrane receptor), aquaporin-1 (membrane transporter), Thy-1 and N- cadherin (glycosylphosphatidylinositol-anchored membrane protein and membrane glycoprotein), are specifically as- sociated with noncaveolar lipid microdomains, but not with caveolae. These results indicate that the lipid and protein compositions of caveolae differ from those of noncaveolar lipid microdomains. The difference in their protein compo- sitions implies that these two membrane microdomains may have different cellular functions. 展开更多
关键词 membrane lipid microdomains CAVEOLAE noncaveolar lipid microdomains lipid rafts sucrose density gradient sodium carbonate extraction
下载PDF
Thermal Characteristic Identification of an Alcohol Flame by Measuring its Density Gradient in Shack-Hartmann Optical System
3
作者 Md.T.I.Khan K.Teramoto 《Journal of Thermal Science》 SCIE EI CAS CSCD 2011年第1期93-96,共4页
Understanding the flame structure for different combustion in industries has drawn the increasing attention around the world.Particularly,for increasing the recent interest of using the hydrogen fuelled vehicles in re... Understanding the flame structure for different combustion in industries has drawn the increasing attention around the world.Particularly,for increasing the recent interest of using the hydrogen fuelled vehicles in recent world,structural analysis of flame in combustion chamber has attracted the attention of researchers.However,the high flame temperature and strong flame emissions increase the experimental difficulties,especially,in all kinds of intrusive measurement systems for determining the flame structures and flame temperatures.Therefore,a non-intrusive laser interferometer technique based on Shack-Hartmann optical system has been proposed to measure the thermal characteristic of a flame structure.In the present study,a low-stretched diffusion flame of methanol burner has been used.Shack-Hartmann optical system is a type of wave front sensor.It is commonly used in adaptive optical systems.It consists of an array of lenses to focus the image onto a photon sensor (photo-detector) at the focal plane and measures the wave front tilt.The major objective of the present study is to develop a laser interferometer measurement technique for analyzing the flame structure and its temperature propagation by measuring the density gradient of the flame.Optical interferometer technique is a potential candidate for the non-invasive measurement.In the present paper,a novel method for the measurement of density gradient in flame by using Shack-Hartmann optical system is proposed.A collimated laser beam that has been passed through the flame is tilted due to the density gradient inside the flame.A CCD camera (CCD photo sensor) has been used to observe the wave front tilts at the focal plane. 展开更多
关键词 Laser Interferometer Density Gradient Shack-Hartmann Optical System Thermal Characteristics Alcohol Flame.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部