城市轨道交通作为低能耗、少污染、具有可持续属性的公共交通类型之一,其对沿线城市发展、居民生产生活产生深远影响。中国城市轨道交通建设目前仍处于高速发展阶段,部分站点周边地区面临空间利用率不匹配、潮汐客流趋势加重等问题。城...城市轨道交通作为低能耗、少污染、具有可持续属性的公共交通类型之一,其对沿线城市发展、居民生产生活产生深远影响。中国城市轨道交通建设目前仍处于高速发展阶段,部分站点周边地区面临空间利用率不匹配、潮汐客流趋势加重等问题。城市轨道交通站点周边地区的城市空间规划需关注城市居民的活动特征,以提升站点地区城市空间全时段活力。以南京市中心城区内轨道交通站点周边地区为例,基于城市空间开放数据、实地踏勘调研、互联网移动定位服务(location based service,LBS)数据,采集统计与评价建成环境现状与居民活动特征数据,并运用梯度提升决策树与SHAP(Shapley addictive explanation)解释分析站点地区建成环境与居民活动的非线性关系及建成环境要素之间的交互作用,在此基础上提出建成环境要素适宜区间及协同优化条件,为城市轨道交通站点周边地区空间规划与优化提供建议。展开更多
随着联邦学习的不断兴起,梯度提升决策树(GBDT)作为一种传统的机器学习方法,逐渐应用于联邦学习中以达到理想的分类效果。针对现有GBDT的横向联邦学习模型,存在精度受非独立同分布数据的影响较大、信息泄露和通信成本高等问题,提出了一...随着联邦学习的不断兴起,梯度提升决策树(GBDT)作为一种传统的机器学习方法,逐渐应用于联邦学习中以达到理想的分类效果。针对现有GBDT的横向联邦学习模型,存在精度受非独立同分布数据的影响较大、信息泄露和通信成本高等问题,提出了一种面向非独立同分布数据的联邦梯度提升决策树(federated GBDT for non-IID dataset,nFL-GBDT)。首先,采用局部敏感哈希(LSH)来计算各个参与方之间的相似样本,通过加权梯度来构建第一棵树。其次,由可靠第三方计算只需要一轮通信的全局叶权重来更新树模型。最后,实验分析表明了该算法能够实现对原始数据的隐私保护,并且通信成本低于simFL和FederBoost。同时,实验按照不平衡比率来划分三组公共的数据集,结果表明该算法与Individual、TFL及F-GBDT-G相比,准确率分别提升了3.53%、5.46%和4.43%。展开更多
文摘城市轨道交通作为低能耗、少污染、具有可持续属性的公共交通类型之一,其对沿线城市发展、居民生产生活产生深远影响。中国城市轨道交通建设目前仍处于高速发展阶段,部分站点周边地区面临空间利用率不匹配、潮汐客流趋势加重等问题。城市轨道交通站点周边地区的城市空间规划需关注城市居民的活动特征,以提升站点地区城市空间全时段活力。以南京市中心城区内轨道交通站点周边地区为例,基于城市空间开放数据、实地踏勘调研、互联网移动定位服务(location based service,LBS)数据,采集统计与评价建成环境现状与居民活动特征数据,并运用梯度提升决策树与SHAP(Shapley addictive explanation)解释分析站点地区建成环境与居民活动的非线性关系及建成环境要素之间的交互作用,在此基础上提出建成环境要素适宜区间及协同优化条件,为城市轨道交通站点周边地区空间规划与优化提供建议。
文摘随着联邦学习的不断兴起,梯度提升决策树(GBDT)作为一种传统的机器学习方法,逐渐应用于联邦学习中以达到理想的分类效果。针对现有GBDT的横向联邦学习模型,存在精度受非独立同分布数据的影响较大、信息泄露和通信成本高等问题,提出了一种面向非独立同分布数据的联邦梯度提升决策树(federated GBDT for non-IID dataset,nFL-GBDT)。首先,采用局部敏感哈希(LSH)来计算各个参与方之间的相似样本,通过加权梯度来构建第一棵树。其次,由可靠第三方计算只需要一轮通信的全局叶权重来更新树模型。最后,实验分析表明了该算法能够实现对原始数据的隐私保护,并且通信成本低于simFL和FederBoost。同时,实验按照不平衡比率来划分三组公共的数据集,结果表明该算法与Individual、TFL及F-GBDT-G相比,准确率分别提升了3.53%、5.46%和4.43%。