期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于偏差补偿TCN-LSTM和梯级迁移策略的短期风电功率预测 被引量:1
1
作者 宋技峰 彭小圣 +4 位作者 杨子民 段睿钦 周彬彬 陈凯 王有香 《南方电网技术》 CSCD 北大核心 2023年第12期71-79,共9页
随着新能源在电力系统中的占比逐渐提高,新能源功率预测成为一个研究热点。但对于新建的风电场的功率预测则面临历史数据不足和特征迁移困难的问题。因此提出了一种基于偏差补偿TCN-LSTM和梯级迁移策略的短期风电功率预测方法。首先,将... 随着新能源在电力系统中的占比逐渐提高,新能源功率预测成为一个研究热点。但对于新建的风电场的功率预测则面临历史数据不足和特征迁移困难的问题。因此提出了一种基于偏差补偿TCN-LSTM和梯级迁移策略的短期风电功率预测方法。首先,将目标风电场的少量数据根据与源风电场的相关性大小分为两组,然后利用源风电场历史数据训练含有误差补偿模块的复合模型,最后以梯级迁移学习策略进行建模。相关算例分析表明基于TCN-LSTM的补偿梯级迁移模型预测精度相比同类直接预测模型提升1.23%。相关算例证明了所提出的方法的有效性。 展开更多
关键词 时间卷积网络-长短时记忆网络 短期风电功率预测 偏差补偿 梯级迁移策略
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部