期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ZY3立体像对和机载LiDAR抽样数据协同估测森林平均高 被引量:5
1
作者 赵俊鹏 赵磊 +2 位作者 陈尔学 万祥星 徐昆鹏 《林业科学》 EI CAS CSCD 北大核心 2021年第9期66-75,共10页
【目的】探索一种适用于已具备林下地形,可协同利用少量实测样地数据、抽样式采集的机载激光雷达(LiDAR)条带数据和区域全覆盖的资源三(ZY3)立体像对数据有效估测区域森林平均高的方法,为提高森林资源调查效率和精度提供技术支撑。【方... 【目的】探索一种适用于已具备林下地形,可协同利用少量实测样地数据、抽样式采集的机载激光雷达(LiDAR)条带数据和区域全覆盖的资源三(ZY3)立体像对数据有效估测区域森林平均高的方法,为提高森林资源调查效率和精度提供技术支撑。【方法】以广西高峰林场2个分场为研究区,2018年获取覆盖整个研究区的机载LiDAR、ZY3立体像对和少量实测样地数据。将LiDAR数据提取的DEM作为历史已存在的林下地形,从全覆盖的LiDAR数据中抽取12条飞行条带的LiDAR数据“模拟”抽样式采集的LiDAR数据,形成“林下地形+LiDAR抽样+ZY3立体像对+样地”数据集;以样地和LiDAR数据提取出LiDAR抽样数据对应的森林平均高为模型建立的参考数据(因变量Y),以ZY3立体像对提取的数字表面模型(DSM)减去数字高程模型(DEM)得到的CHMZY3为自变量(X),采用普通最小二乘(OLS)模型、k-邻近(KNN)模型和回归克里格(RK)模型估测森林平均高,并对其估测效果进行比较评价。【结果】OLS和KNN模型的均方根误差(RMSE)分别为1.88和1.96 m,估测精变(EA)分别为87.18%和86.64%;RK模型估测精度相对较高,RKOLS模型的RMSE=1.84 m,EA=87.42%;RKKNN模型的RMSE=1.86 m,EA=87.32%。【结论】本研究中2类4种模型均可有效估测森林平均高,回归克里格模型(RKOLS、RKKNN)优于非空间模型(OLS、KNN),RKOLS模型估测精度最高;在林下地形已知时,协同利用少量实测样地数据、抽样式采集的机载LiDAR条带数据和区域全覆盖的ZY3立体像对数据能够实现区域森林平均高的高效、高精度估测。 展开更多
关键词 激光雷达 资源三号 森林平均高 回归克里格
下载PDF
Prediction of Dry Dipterocarp Forest Distribution Using Ecological Niche Model in Ping Basin of Northern Thailand
2
作者 Suwit Ongsomwang Yaowaret Jantakat 《Journal of Environmental Science and Engineering(B)》 2012年第5期636-643,共8页
DDF (dry dipterocarp forest) is importantly deciduous forest type in Thailand since it consists of important tree species for timber products and non-timber products. So, people would like to come to use these produ... DDF (dry dipterocarp forest) is importantly deciduous forest type in Thailand since it consists of important tree species for timber products and non-timber products. So, people would like to come to use these products for daily uses in this forest type. The main aim of this study is to evaluate significant biophysical factors for DDF distribution using factor analysis and to model DDF distribution using ENFA (ecological niche factor analysis). In this study, 13 watersheds of Ping Basin in northern Thailand were selected as the study site based on availability of forest inventory data in 2007 from DNP (Department of National Parks, Wildlife and Plant Conservation). Basic biophysical data for data analysis included forest inventory data (179 DDF plots), 10 climatic data, three topographic data, and one soil data. For identification and evaluation of biophysical factors for DDF distribution using factor analysis, the first three factors, namely DDF-1, DDF-2 and DDF-3, had been extracted with 95.35% of total variance. These three components were used to predict DDF distribution based on HS (habitat suitability) with ENFA. In practice, the results were validated with AVI (absolute validation index) and CVI (contrast validation index) with validated forest inventory dataset. This evaluation shows that DDF-2 model is the best HS data consisting of four physical factors (mean annually temperature, mean monthly maximum temperature, mean monthly minimum temperature, and elevation), which is able to effectively used for habitat suitability for DDF distribution prediction. It was found that habitat suitability for DDF distribution can be classified into four classes including high suitable habitat, moderate suitable habitat, low suitable habitat, and unsuitable habitat. As a result, DDF distributions with high suitable habitat are highly related with DDF forest inventory plots of DNP. Thus, the obtained output can be further used for DDF rehabilitation according to climate and topographic factors. 展开更多
关键词 Ping Basin of northern Thailand dry dipterocarp forest distribution prediction ENFA (ecological niche factor analysis).
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部