Present mature plants hydroponic technology was used,combined with some excellent characteristics,such as growth conditions was easy to control and process of root growth was easy to continuously observe,the nematicid...Present mature plants hydroponic technology was used,combined with some excellent characteristics,such as growth conditions was easy to control and process of root growth was easy to continuously observe,the nematicidal activity of 5 kinds of Chinese herbs extracts and the compound solution of Avermectin,with strong contact toxicity effect indoor,was systematically studied and investigated the affection on the root-knot nematode parasitized on the cucumber seeding stage. It is found that under the premise of no influence on root growth of cucumber,extracts from Picrorhiza scrophulariiflora and Punica granatum showed strong prevention and nematicidal activity,and had the similar efficacy of Avermectin; while the extracts from Cibotium barometz,Aucklandia lappa Decne and Fructus cnidii showed low nematicidal activity and various degrees inhibition effect on plant growth.展开更多
Among the many approaches for studying the net primary productivity (NPP), a new method by using remote sensing was introduced in this paper. With spectral information source (the visible band, near infrared band and ...Among the many approaches for studying the net primary productivity (NPP), a new method by using remote sensing was introduced in this paper. With spectral information source (the visible band, near infrared band and thermal infrared band) of NOAA-AVHRR, we can get the relative index and parameters, which can be used for estimating NPP of terrestrial vegetation. By means of remote sensing, the estimation of biomass and NPP is mainly based on the models of light energy utilization. In other words, the biomass and NPP can be calculated from the relation among NPP, absorbed photosynthetical active radiation (APAR) and the rate (epsilon) of transformation of APAR to organic matter, thus: NPP = ( FPAR x PAR) x [epsilon * x sigma (T) x sigma (E) x sigma (S) x (1 - Y-m) x (1 - Y-g)]. Based upon remote sensing ( RS) and geographic information system (GIS), the NPP of terrestrial vegetation in China in every ten days was calculated, and the annual NPP was integrated. The result showed that the total NPP of terrestrial vegetation in China was 6.13 x 10(9) t C . a(-1) in 1990 and the maximum NPP was 1 812.9 g C/m(2). According to this result, the spatio-temporal distribution of NPP was analyzed. Comparing to the statistical models, the RS model, using area object other than point one, can better reflect the distribution of NPP, and match the geographic distribution of vegetation in China.展开更多
In a previous greenhouse experiment, we showed that there was an interaction between Cu and Zn, which affected growth and metal uptake by young barley plants grown on soil to which Cd, Cu, Pb, and Zn had been added. W...In a previous greenhouse experiment, we showed that there was an interaction between Cu and Zn, which affected growth and metal uptake by young barley plants grown on soil to which Cd, Cu, Pb, and Zn had been added. We suggested that the underlying mechanism was the control of the amount of plant-available Zn by competitive adsorption between Cu and Zn. In order to test this hypothesis, the adsorption of Zn alone, and in the presence of added Cd, Cu and Pb, has been measured using the same soil. Following adsorption, the extractability of the Zn in CaCl2 solution was measured. The adsorption isotherms showed that of the added metals only Cu had a large effect on Zn adsorption. The effect of Cu was to reduce Zn adsorption and to increase the amount of CaCl2-extractable (i.e. plant-available) Zn, in agreement with the conclusions from the greenhouse experiment. The magnitude of the effect of Cu on plant-available Zn was similar in both experiments.展开更多
A pot experiment was conducted with multi-metal (Pb, Cd, Cu, and Zn) contaminated acidic soil to investigate changes in available metal burden resulting from the application of industrial wastes (fly ash and steel ...A pot experiment was conducted with multi-metal (Pb, Cd, Cu, and Zn) contaminated acidic soil to investigate changes in available metal burden resulting from the application of industrial wastes (fly ash and steel slag). The efficiency of amendments- induced metal stabilization was evaluated by diffusive gradients in thin films (DGT), sequential extraction, and plant uptake. The stability of remediation was assessed by an acidification test and by chemical equilibrium modeling. Addition of fly ash (20 g kg-1) and steel slag (3 g kg-1) resulted in similar increase in soil pH. Both amendments significantly decreased the concentrations of metals measured with DGT (CDGT) and the metal uptake by Oryza sativa L. Significant correlations were found between CDGT and the concentration of a combination of metal fractions (exchangeable, bound to carbonates, and bound to Fe/Mn oxides), unraveling the labile species that participate in the flux of metal resupply. The capability of metal resupply, as reflected by the R (ratio of CDGT to pore water metal concentration) values, significantly decreased in the amended soils. The CDGT correlated well with the plant uptake, suggesting that DGT is a good indicator for bioavailability. Acidification raised the extractable metal concentration in amended soil but the concentration did not return to the pre-amendment level. Equilibrium modeling indicated that the soil amendments induced the precipitation of several Fe, A1 and Ca minerals, which may play a positive role in metal stabilization. Chemical stabilization with alkaline amendments could be an effective and stable soil remediation strategy for attenuating metal bioavailability and reducing plant metal uptake.展开更多
基金Supported by Science and Technology Project from Shaanxi Provincial Department of EducationMajor Scientific and Technological In-novation Project of Shaanxi Province (2009ZKC08-09 )Science and Technology Project of Wenzhou (H20080045)~~
文摘Present mature plants hydroponic technology was used,combined with some excellent characteristics,such as growth conditions was easy to control and process of root growth was easy to continuously observe,the nematicidal activity of 5 kinds of Chinese herbs extracts and the compound solution of Avermectin,with strong contact toxicity effect indoor,was systematically studied and investigated the affection on the root-knot nematode parasitized on the cucumber seeding stage. It is found that under the premise of no influence on root growth of cucumber,extracts from Picrorhiza scrophulariiflora and Punica granatum showed strong prevention and nematicidal activity,and had the similar efficacy of Avermectin; while the extracts from Cibotium barometz,Aucklandia lappa Decne and Fructus cnidii showed low nematicidal activity and various degrees inhibition effect on plant growth.
文摘Among the many approaches for studying the net primary productivity (NPP), a new method by using remote sensing was introduced in this paper. With spectral information source (the visible band, near infrared band and thermal infrared band) of NOAA-AVHRR, we can get the relative index and parameters, which can be used for estimating NPP of terrestrial vegetation. By means of remote sensing, the estimation of biomass and NPP is mainly based on the models of light energy utilization. In other words, the biomass and NPP can be calculated from the relation among NPP, absorbed photosynthetical active radiation (APAR) and the rate (epsilon) of transformation of APAR to organic matter, thus: NPP = ( FPAR x PAR) x [epsilon * x sigma (T) x sigma (E) x sigma (S) x (1 - Y-m) x (1 - Y-g)]. Based upon remote sensing ( RS) and geographic information system (GIS), the NPP of terrestrial vegetation in China in every ten days was calculated, and the annual NPP was integrated. The result showed that the total NPP of terrestrial vegetation in China was 6.13 x 10(9) t C . a(-1) in 1990 and the maximum NPP was 1 812.9 g C/m(2). According to this result, the spatio-temporal distribution of NPP was analyzed. Comparing to the statistical models, the RS model, using area object other than point one, can better reflect the distribution of NPP, and match the geographic distribution of vegetation in China.
文摘In a previous greenhouse experiment, we showed that there was an interaction between Cu and Zn, which affected growth and metal uptake by young barley plants grown on soil to which Cd, Cu, Pb, and Zn had been added. We suggested that the underlying mechanism was the control of the amount of plant-available Zn by competitive adsorption between Cu and Zn. In order to test this hypothesis, the adsorption of Zn alone, and in the presence of added Cd, Cu and Pb, has been measured using the same soil. Following adsorption, the extractability of the Zn in CaCl2 solution was measured. The adsorption isotherms showed that of the added metals only Cu had a large effect on Zn adsorption. The effect of Cu was to reduce Zn adsorption and to increase the amount of CaCl2-extractable (i.e. plant-available) Zn, in agreement with the conclusions from the greenhouse experiment. The magnitude of the effect of Cu on plant-available Zn was similar in both experiments.
基金Supported by the NSFC-Guangdong Joint Foundation of China(No.U0833004)the National Natural Science Foundation of China(No.41101483)the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2011),China
文摘A pot experiment was conducted with multi-metal (Pb, Cd, Cu, and Zn) contaminated acidic soil to investigate changes in available metal burden resulting from the application of industrial wastes (fly ash and steel slag). The efficiency of amendments- induced metal stabilization was evaluated by diffusive gradients in thin films (DGT), sequential extraction, and plant uptake. The stability of remediation was assessed by an acidification test and by chemical equilibrium modeling. Addition of fly ash (20 g kg-1) and steel slag (3 g kg-1) resulted in similar increase in soil pH. Both amendments significantly decreased the concentrations of metals measured with DGT (CDGT) and the metal uptake by Oryza sativa L. Significant correlations were found between CDGT and the concentration of a combination of metal fractions (exchangeable, bound to carbonates, and bound to Fe/Mn oxides), unraveling the labile species that participate in the flux of metal resupply. The capability of metal resupply, as reflected by the R (ratio of CDGT to pore water metal concentration) values, significantly decreased in the amended soils. The CDGT correlated well with the plant uptake, suggesting that DGT is a good indicator for bioavailability. Acidification raised the extractable metal concentration in amended soil but the concentration did not return to the pre-amendment level. Equilibrium modeling indicated that the soil amendments induced the precipitation of several Fe, A1 and Ca minerals, which may play a positive role in metal stabilization. Chemical stabilization with alkaline amendments could be an effective and stable soil remediation strategy for attenuating metal bioavailability and reducing plant metal uptake.