本文主要证明了下述定理: 设f(z)=sum from n=0 to∞a_nz^(λ_n)为一超越整函数,那么: (1)当f(z)具有(b,d)型A.P.间隙时,对任一有穷复数a,都有δ_s(a,f)≤1-1/d;当b>0时,还有:sum from a≠∞ to δ(a,f)≤1-1/d。 (2):当λ_(m+1)-λ_...本文主要证明了下述定理: 设f(z)=sum from n=0 to∞a_nz^(λ_n)为一超越整函数,那么: (1)当f(z)具有(b,d)型A.P.间隙时,对任一有穷复数a,都有δ_s(a,f)≤1-1/d;当b>0时,还有:sum from a≠∞ to δ(a,f)≤1-1/d。 (2):当λ_(m+1)-λ_m(m=n,n+1,…)的最大公因子d_n→∞(n→∞)时,对在一慢增长的亚纯函数a(z),都有:_s(a(z),f)≤1/2。展开更多
The paper is going to introduce loss distribution’s model selection,parametric estimation,testing the fit of the model by mean residual life function and experience mean residual life function.It is important for ins...The paper is going to introduce loss distribution’s model selection,parametric estimation,testing the fit of the model by mean residual life function and experience mean residual life function.It is important for insurance and actuarial.展开更多
文摘本文主要证明了下述定理: 设f(z)=sum from n=0 to∞a_nz^(λ_n)为一超越整函数,那么: (1)当f(z)具有(b,d)型A.P.间隙时,对任一有穷复数a,都有δ_s(a,f)≤1-1/d;当b>0时,还有:sum from a≠∞ to δ(a,f)≤1-1/d。 (2):当λ_(m+1)-λ_m(m=n,n+1,…)的最大公因子d_n→∞(n→∞)时,对在一慢增长的亚纯函数a(z),都有:_s(a(z),f)≤1/2。
文摘The paper is going to introduce loss distribution’s model selection,parametric estimation,testing the fit of the model by mean residual life function and experience mean residual life function.It is important for insurance and actuarial.