基于有限元-双模态方程法(FEM-DMF)开展结构耦合损耗因子的预示精度研究.以典型L型耦合板为研究对象,通过与有限元-功率输入法(FEM-PIM)对比,深入研究了分析频带、子系统刚度比和结构阻尼对FEM-DMF方法预示耦合损耗因子精度的影响.以L...基于有限元-双模态方程法(FEM-DMF)开展结构耦合损耗因子的预示精度研究.以典型L型耦合板为研究对象,通过与有限元-功率输入法(FEM-PIM)对比,深入研究了分析频带、子系统刚度比和结构阻尼对FEM-DMF方法预示耦合损耗因子精度的影响.以L型耦合加筋板为研究对象,验证FEM-DMF方法在复杂结构中的适用性.结果表明:在满足模态能量均一化假设的频带内,随着L型耦合板的子系统刚度比和结构阻尼的增大,FEM-DMF方法的预示精度不断提高;且随着结构阻尼的增大,满足耦合损耗因子预示精度的临界刚度比逐渐减小;对于L型耦合加筋板,在满足模态能量均一化假设的频带内,基于FEM-DMF方法预示的耦合损耗因子误差小于1 d B;而与FEM-PIM相比,FEM-DM F方法的计算效率提高了87.5%,从而说明FEM-DM F方法在其适用范围内能够准确高效地预示复杂结构的耦合损耗因子.展开更多
The shell-model molecular dynamics method was applied to simulate the melting temper- atures of SrF2 and BaF2 at elevated temperatures and high pressures. The same method was used to calculate the equations of state f...The shell-model molecular dynamics method was applied to simulate the melting temper- atures of SrF2 and BaF2 at elevated temperatures and high pressures. The same method was used to calculate the equations of state for SrF2 and BaF2 over the pressure range of 0.1 MPa-3 GPa and 0.1 MPa-7 GPa. Compared with previous results for equations of state, the maximum errors are 0.3% and 2.2%, respectively. Considering the pre-melting in the fluorite-type crystals, we made the necessary corrections for the simulated melting temper- atures of SrF2 and BaF2. Consequently, the melting temperatures of SrF2 and BaF2 were obtained for high pressures. The melting temperatures of SrF2 and BaF2 that were obtained by the simulation are in good agreement with available experimental data.展开更多
To gain a thorough understanding of the load state of parallel kinematic machines(PKMs), a methodology of elastodynamic modeling and joint reaction prediction is proposed. For this purpose, a Sprint Z3 model is used a...To gain a thorough understanding of the load state of parallel kinematic machines(PKMs), a methodology of elastodynamic modeling and joint reaction prediction is proposed. For this purpose, a Sprint Z3 model is used as a case study to illustrate the process of joint reaction analysis. The substructure synthesis method is applied to deriving an analytical elastodynamic model for the 3-PRS PKM device, in which the compliances of limbs and joints are considered. Each limb assembly is modeled as a spatial beam with non-uniform cross-section supported by lumped virtual springs at the centers of revolute and spherical joints. By introducing the deformation compatibility conditions between the limbs and the platform, the governing equations of motion of the system are obtained. After degenerating the governing equations into quasi-static equations, the effects of the gravity on system deflections and joint reactions are investigated with the purpose of providing useful information for the kinematic calibration and component strength calculations as well as structural optimizations of the 3-PRS PKM module. The simulation results indicate that the elastic deformation of the moving platform in the direction of gravity caused by gravity is quite large and cannot be ignored. Meanwhile, the distributions of joint reactions are axisymmetric and position-dependent. It is worthy to note that the proposed elastodynamic modeling method combines the benefits of accuracy of finite element method and concision of analytical method so that it can be used to predict the stiffness characteristics and joint reactions of a PKM throughout its entire workspace in a quick and accurate manner. Moreover, the present model can also be easily applied to evaluating the overall rigidity performance as well as statics of other PKMs with high efficiency after minor modifications.展开更多
The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturban...The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturbance, etc. By introducing the reference, trajectory was generated by a virtual USV, and the error equation of trajectory tracking for USV was obtained, which transformed the tracking problem of underactuated USV into the stabilization problem of the trajectory tracking error equation. A backstepping adaptive sliding mode controller was proposed based on backstepping technology and method of dynamic slide model control. By means of theoretical analysis, it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property. Simulation results are presented to illustrate the effectiveness of the proposed controller.展开更多
文摘基于有限元-双模态方程法(FEM-DMF)开展结构耦合损耗因子的预示精度研究.以典型L型耦合板为研究对象,通过与有限元-功率输入法(FEM-PIM)对比,深入研究了分析频带、子系统刚度比和结构阻尼对FEM-DMF方法预示耦合损耗因子精度的影响.以L型耦合加筋板为研究对象,验证FEM-DMF方法在复杂结构中的适用性.结果表明:在满足模态能量均一化假设的频带内,随着L型耦合板的子系统刚度比和结构阻尼的增大,FEM-DMF方法的预示精度不断提高;且随着结构阻尼的增大,满足耦合损耗因子预示精度的临界刚度比逐渐减小;对于L型耦合加筋板,在满足模态能量均一化假设的频带内,基于FEM-DMF方法预示的耦合损耗因子误差小于1 d B;而与FEM-PIM相比,FEM-DM F方法的计算效率提高了87.5%,从而说明FEM-DM F方法在其适用范围内能够准确高效地预示复杂结构的耦合损耗因子.
基金This work was supported by the National Natural Science Foundation of China (No.10676025) and Research Center of Laser Fusion, China Academy of Engineering Physics.
文摘The shell-model molecular dynamics method was applied to simulate the melting temper- atures of SrF2 and BaF2 at elevated temperatures and high pressures. The same method was used to calculate the equations of state for SrF2 and BaF2 over the pressure range of 0.1 MPa-3 GPa and 0.1 MPa-7 GPa. Compared with previous results for equations of state, the maximum errors are 0.3% and 2.2%, respectively. Considering the pre-melting in the fluorite-type crystals, we made the necessary corrections for the simulated melting temper- atures of SrF2 and BaF2. Consequently, the melting temperatures of SrF2 and BaF2 were obtained for high pressures. The melting temperatures of SrF2 and BaF2 that were obtained by the simulation are in good agreement with available experimental data.
基金Project(Kfkt2013-12)supported by Open Research Fund of Key Laboratory of High Performance Complex Manufacturing of Central South University,ChinaProject(2014002)supported by the Open Fund of Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures,ChinaProject(51375013)supported by the National Natural Science Foundation of China
文摘To gain a thorough understanding of the load state of parallel kinematic machines(PKMs), a methodology of elastodynamic modeling and joint reaction prediction is proposed. For this purpose, a Sprint Z3 model is used as a case study to illustrate the process of joint reaction analysis. The substructure synthesis method is applied to deriving an analytical elastodynamic model for the 3-PRS PKM device, in which the compliances of limbs and joints are considered. Each limb assembly is modeled as a spatial beam with non-uniform cross-section supported by lumped virtual springs at the centers of revolute and spherical joints. By introducing the deformation compatibility conditions between the limbs and the platform, the governing equations of motion of the system are obtained. After degenerating the governing equations into quasi-static equations, the effects of the gravity on system deflections and joint reactions are investigated with the purpose of providing useful information for the kinematic calibration and component strength calculations as well as structural optimizations of the 3-PRS PKM module. The simulation results indicate that the elastic deformation of the moving platform in the direction of gravity caused by gravity is quite large and cannot be ignored. Meanwhile, the distributions of joint reactions are axisymmetric and position-dependent. It is worthy to note that the proposed elastodynamic modeling method combines the benefits of accuracy of finite element method and concision of analytical method so that it can be used to predict the stiffness characteristics and joint reactions of a PKM throughout its entire workspace in a quick and accurate manner. Moreover, the present model can also be easily applied to evaluating the overall rigidity performance as well as statics of other PKMs with high efficiency after minor modifications.
基金Project(51409061)supported by the National Natural Science Foundation of ChinaProject(2013M540271)supported by China Postdoctoral Science Foundation+1 种基金Project(LBH-Z13055)Supported by Heilongjiang Postdoctoral Financial Assistance,ChinaProject(HEUCFD1403)supported by Basic Research Foundation of Central Universities,China
文摘The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturbance, etc. By introducing the reference, trajectory was generated by a virtual USV, and the error equation of trajectory tracking for USV was obtained, which transformed the tracking problem of underactuated USV into the stabilization problem of the trajectory tracking error equation. A backstepping adaptive sliding mode controller was proposed based on backstepping technology and method of dynamic slide model control. By means of theoretical analysis, it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property. Simulation results are presented to illustrate the effectiveness of the proposed controller.