欺骗干扰是一种旨在迫使GNSS接收机得到错误导航信息的蓄意攻击。卫星导航接收机需要及时且准确检测出现的欺骗干扰信号。本文借鉴认知无线电中协作频谱感知的思想,提出了一种基于决策融合的卫星导航欺骗干扰检测算法。首先采用能量检...欺骗干扰是一种旨在迫使GNSS接收机得到错误导航信息的蓄意攻击。卫星导航接收机需要及时且准确检测出现的欺骗干扰信号。本文借鉴认知无线电中协作频谱感知的思想,提出了一种基于决策融合的卫星导航欺骗干扰检测算法。首先采用能量检测算法,分析并推导了单个检测器在瑞利衰落信道下的卫星导航欺骗干扰检测性能,然后应用K/N准则的决策融合方法以进一步改善欺骗干扰的检测性能。仿真结果表明:当SINR=-10 d B时,检测概率比单次检测概率平均提高了16.60%。展开更多
缓变式欺骗干扰信号在干扰初期与全球导航卫星系统(Global Navigation Satellite System,GNSS)真实信号保持一致,其隐蔽性强,危害性大。常见的缓变式欺骗干扰检测方法是将卡尔曼滤波新息序列作为检测量,基于卡方检验检测干扰。然而,这...缓变式欺骗干扰信号在干扰初期与全球导航卫星系统(Global Navigation Satellite System,GNSS)真实信号保持一致,其隐蔽性强,危害性大。常见的缓变式欺骗干扰检测方法是将卡尔曼滤波新息序列作为检测量,基于卡方检验检测干扰。然而,这些方法存在检测时间较长、检测性能低的问题。针对这一问题,提出了基于序贯概率比检测(Sequential Probability Ratio Test,SPRT)的缓变式欺骗干扰检测算法,将新息序列检测量作为SPRT样本,计算检验统计量,检测欺骗的同时能识别受欺骗的卫星。同时,应用Bayes参数估计理论,提出自适应SPRT算法,自适应补偿检验统计量,加快算法检测速度,并可通过调整风险参数,进一步提高算法的检测性能。仿真结果表明,与传统方法比,本文算法对缓变式欺骗干扰的检测时间短、检测性能高,并且在多星受欺骗时,可达到较好的检测性能.展开更多
In order to solve the problem that the global navigation satellite system(GNSS) receivers can hardly detect the GNSS spoofing when they are deceived by a spoofer,a model-based approach for the identification of the ...In order to solve the problem that the global navigation satellite system(GNSS) receivers can hardly detect the GNSS spoofing when they are deceived by a spoofer,a model-based approach for the identification of the GNSS spoofing is proposed.First,a Hammerstein model is applied to model the spoofer/GNSS transmitter and the wireless channel.Then,a novel method based on the uncultivated wolf pack algorithm(UWPA) is proposed to estimate the model parameters.Taking the estimated model parameters as a feature vector,the identification of the spoofing is realized by comparing the Euclidean distance between the feature vectors.Simulations verify the effectiveness and the robustness of the proposed method.The results show that,compared with the other identification algorithms,such as least square(LS),the iterative method and the bat-inspired algorithm(BA),although the UWPA has a little more time-eomplexity than the LS and the BA algorithm,it has better estimation precision of the model parameters and higher identification rate of the GNSS spoofing,even for relative low signal-to-noise ratios.展开更多
文摘欺骗干扰是一种旨在迫使GNSS接收机得到错误导航信息的蓄意攻击。卫星导航接收机需要及时且准确检测出现的欺骗干扰信号。本文借鉴认知无线电中协作频谱感知的思想,提出了一种基于决策融合的卫星导航欺骗干扰检测算法。首先采用能量检测算法,分析并推导了单个检测器在瑞利衰落信道下的卫星导航欺骗干扰检测性能,然后应用K/N准则的决策融合方法以进一步改善欺骗干扰的检测性能。仿真结果表明:当SINR=-10 d B时,检测概率比单次检测概率平均提高了16.60%。
文摘缓变式欺骗干扰信号在干扰初期与全球导航卫星系统(Global Navigation Satellite System,GNSS)真实信号保持一致,其隐蔽性强,危害性大。常见的缓变式欺骗干扰检测方法是将卡尔曼滤波新息序列作为检测量,基于卡方检验检测干扰。然而,这些方法存在检测时间较长、检测性能低的问题。针对这一问题,提出了基于序贯概率比检测(Sequential Probability Ratio Test,SPRT)的缓变式欺骗干扰检测算法,将新息序列检测量作为SPRT样本,计算检验统计量,检测欺骗的同时能识别受欺骗的卫星。同时,应用Bayes参数估计理论,提出自适应SPRT算法,自适应补偿检验统计量,加快算法检测速度,并可通过调整风险参数,进一步提高算法的检测性能。仿真结果表明,与传统方法比,本文算法对缓变式欺骗干扰的检测时间短、检测性能高,并且在多星受欺骗时,可达到较好的检测性能.
基金The National Natural Science Foundation of China(No.61271214,61471152)the Postdoctoral Science Foundation of Jiangsu Province(No.1402023C)the Natural Science Foundation of Zhejiang Province(No.LZ14F010003)
文摘In order to solve the problem that the global navigation satellite system(GNSS) receivers can hardly detect the GNSS spoofing when they are deceived by a spoofer,a model-based approach for the identification of the GNSS spoofing is proposed.First,a Hammerstein model is applied to model the spoofer/GNSS transmitter and the wireless channel.Then,a novel method based on the uncultivated wolf pack algorithm(UWPA) is proposed to estimate the model parameters.Taking the estimated model parameters as a feature vector,the identification of the spoofing is realized by comparing the Euclidean distance between the feature vectors.Simulations verify the effectiveness and the robustness of the proposed method.The results show that,compared with the other identification algorithms,such as least square(LS),the iterative method and the bat-inspired algorithm(BA),although the UWPA has a little more time-eomplexity than the LS and the BA algorithm,it has better estimation precision of the model parameters and higher identification rate of the GNSS spoofing,even for relative low signal-to-noise ratios.