时域重叠复用(Overlapped Time Division Multiplexing,OvTDM)技术作为一种非正交的传输技术,人为地引入了符号间干扰来实现高传输速率,但这也使得OvTDM系统在进行最大似然序列检测时面临着极高的运算复杂度。为解决这一问题,研究了OvTD...时域重叠复用(Overlapped Time Division Multiplexing,OvTDM)技术作为一种非正交的传输技术,人为地引入了符号间干扰来实现高传输速率,但这也使得OvTDM系统在进行最大似然序列检测时面临着极高的运算复杂度。为解决这一问题,研究了OvTDM系统的卷积编码方式,利用发送序列和接收信号之间的关系构建了对应的因子图模型,结合消息传递的原理,提出了一种基于消息传递的OvTDM系统译码算法。该算法通过节点之间信息的不断迭代更新来实现信号的检测。最后,对该算法的性能进行了仿真和分析,并与Fano算法进行比较,仿真结果表明该算法的译码性能优于Fano算法并且具有很低的计算复杂度。展开更多
One key advantage of 4G OFDM system is the relatively simple receiver implementation due to the orthogonal resource allocation.However,from sum-capacity and spectral efficiency points of view,orthogonal systems are ne...One key advantage of 4G OFDM system is the relatively simple receiver implementation due to the orthogonal resource allocation.However,from sum-capacity and spectral efficiency points of view,orthogonal systems are never the achieving schemes.With the rapid development of mobile communication systems,a novel concept of non-orthogonal transmission for 5G mobile communications has attracted researches all around the world.In this trend,many new multiple access schemes and waveform modulation technologies were proposed.In this paper,some promising ones of them were discussed which include Non-orthogonal Multiple Access(NOMA),Sparse Code Multiple Access(SCMA),Multi-user Shared Access(MUSA),Pattern Division Multiple Access(PDMA)and some main new waveforms including Filter-bank based Multicarrier(FBMC),Universal Filtered Multi-Carrier(UFMC),Generalized Frequency Division Multiplexing(GFDM).By analyzing and comparing features of these technologies,a research direction of guiding on future 5G multiple access and waveform are given.展开更多
The paper presents a kind of transmission system which employs M-ary Position Phase Shift Keying(MPPSK) to send data and Phase Locked Loop(PLL) based techniques for data retrieve.With a single PLL, MPPSK demodulation ...The paper presents a kind of transmission system which employs M-ary Position Phase Shift Keying(MPPSK) to send data and Phase Locked Loop(PLL) based techniques for data retrieve.With a single PLL, MPPSK demodulation is achieved, as well as carrier recovery and symbol synchronization.Firstly, MPPSK modulation method is briefly introduced.2PPSK's PSD expression is given with its optimization result.Orthogonal Phase Detector(PD) and static threshold are used for the purpose of wider phase range and simplicity in demodulation.The data rate is alterable, which is 4.65 kbps for 2PPSK and 9.3 kbps for 4PPSK in the paper.Then some indicative comparisons in Signal to Noise Ratio Symbol Error Rate(SNR-SER) are made among 2PPSK, 3PPSK and 4PPSK, of which 4PPSK has proved to be optimal in ten slots each symbol conditions.And finally, it is demonstrated by system simulations that lower than 10-4 Symbol Error Rate(SER) performance can be obtained at 13 dB symbol SNR.展开更多
文摘时域重叠复用(Overlapped Time Division Multiplexing,OvTDM)技术作为一种非正交的传输技术,人为地引入了符号间干扰来实现高传输速率,但这也使得OvTDM系统在进行最大似然序列检测时面临着极高的运算复杂度。为解决这一问题,研究了OvTDM系统的卷积编码方式,利用发送序列和接收信号之间的关系构建了对应的因子图模型,结合消息传递的原理,提出了一种基于消息传递的OvTDM系统译码算法。该算法通过节点之间信息的不断迭代更新来实现信号的检测。最后,对该算法的性能进行了仿真和分析,并与Fano算法进行比较,仿真结果表明该算法的译码性能优于Fano算法并且具有很低的计算复杂度。
基金supported in part by National Natural Science Funds for Creative Research Groups of China under Grant No. 61421061Huawei Innovation Research ProgramOpen Research Fund in Xi’an Jiaotong University under Grant No. sklms2015015
文摘One key advantage of 4G OFDM system is the relatively simple receiver implementation due to the orthogonal resource allocation.However,from sum-capacity and spectral efficiency points of view,orthogonal systems are never the achieving schemes.With the rapid development of mobile communication systems,a novel concept of non-orthogonal transmission for 5G mobile communications has attracted researches all around the world.In this trend,many new multiple access schemes and waveform modulation technologies were proposed.In this paper,some promising ones of them were discussed which include Non-orthogonal Multiple Access(NOMA),Sparse Code Multiple Access(SCMA),Multi-user Shared Access(MUSA),Pattern Division Multiple Access(PDMA)and some main new waveforms including Filter-bank based Multicarrier(FBMC),Universal Filtered Multi-Carrier(UFMC),Generalized Frequency Division Multiplexing(GFDM).By analyzing and comparing features of these technologies,a research direction of guiding on future 5G multiple access and waveform are given.
基金Supported by National Natural Science Foundation of China (60472054)
文摘The paper presents a kind of transmission system which employs M-ary Position Phase Shift Keying(MPPSK) to send data and Phase Locked Loop(PLL) based techniques for data retrieve.With a single PLL, MPPSK demodulation is achieved, as well as carrier recovery and symbol synchronization.Firstly, MPPSK modulation method is briefly introduced.2PPSK's PSD expression is given with its optimization result.Orthogonal Phase Detector(PD) and static threshold are used for the purpose of wider phase range and simplicity in demodulation.The data rate is alterable, which is 4.65 kbps for 2PPSK and 9.3 kbps for 4PPSK in the paper.Then some indicative comparisons in Signal to Noise Ratio Symbol Error Rate(SNR-SER) are made among 2PPSK, 3PPSK and 4PPSK, of which 4PPSK has proved to be optimal in ten slots each symbol conditions.And finally, it is demonstrated by system simulations that lower than 10-4 Symbol Error Rate(SER) performance can be obtained at 13 dB symbol SNR.