高光谱遥感是监测土壤盐渍化的重要手段之一,但野外光谱反射率易受土壤水分的影响,导致盐分监测精度难以保证。为有效消除水分因素,提高土壤含盐量反演精度,该研究以银川平原盐渍化土壤为研究对象,以野外土壤光谱反射率(reflectance,Ref...高光谱遥感是监测土壤盐渍化的重要手段之一,但野外光谱反射率易受土壤水分的影响,导致盐分监测精度难以保证。为有效消除水分因素,提高土壤含盐量反演精度,该研究以银川平原盐渍化土壤为研究对象,以野外土壤光谱反射率(reflectance,Ref)和实测土壤含盐量为数据源,分析不同含水率的土壤光谱特征,将反射率经过一阶微分(first derivative of reflectance,FDR)、正交信号校正(orthogonal signal correction,OSC)和一阶微分-正交信号校正(first derivative of reflectance-orthogonal signal correction,FDR-OSC)变换,分析各光谱数据与含盐量、含水率的相关性,确定最佳“除水”方法,然后基于支持向量机(support vector machine,SVM)建立土壤含盐量反演模型。结果表明:1)含水率与土壤光谱反射率呈反比,光谱在1430、1950、2200 nm附近存在吸收带,1950 nm附近为最主要吸收波段,且存在向长波漂移的现象。2)光谱数据与含水率相关性由强到弱的顺序为:Ref、OSC、FDR、FDR-OSC;与含盐量相关性由强到弱的顺序为:FDR-OSC、FDR、OSC、Ref。3)基于FDR-OSC“除水”的SVM含盐量模型决定系数R_(c)^(2)、R_(p)^(2)和相对分析误差(relative prediction deviation,RPD)分别达到0.952、0.960和5.04,具有极强的拟合和反演能力。研究结果可为银川平原及同类地区土壤含盐量的精准监测提供科学依据。展开更多
介绍正交信号修正法的基本思想并详细推导该算法的实现步骤,将一种改进后的正交信号修正法(orthogonal signal correction,OSC)与偏最小二乘法(partial least square method,PLS)相结合,对原始数据通过OSC消除正交分量,利用PLS建立中长...介绍正交信号修正法的基本思想并详细推导该算法的实现步骤,将一种改进后的正交信号修正法(orthogonal signal correction,OSC)与偏最小二乘法(partial least square method,PLS)相结合,对原始数据通过OSC消除正交分量,利用PLS建立中长期负荷预测模型。该方法能有效地去除自变量系统中与因变量无关的正交数据信息,增强自变量、因变量之间的相关性,在有限的成分中提高成分解释能力。通过算例将PLS与OSC-PLS进行比较分析,结果表明,运用OSC-PLS进行中长期负荷预测,尽管预测模型提取的成分个数变少了,但模型成分的解释性却大幅度增强,预测精度明显提高,具有较强的实用性。展开更多
探讨了基于不同数据预处理方法的正交信号校正在秸杆饲料近红外光谱模型传递中的应用。以141个秸杆青贮饲料样品为研究对象,以其粗蛋白含量为目标参数,研究了基于无处理、局部中心化、全局中心化和Z-score标准化预处理方法的正交信号校...探讨了基于不同数据预处理方法的正交信号校正在秸杆饲料近红外光谱模型传递中的应用。以141个秸杆青贮饲料样品为研究对象,以其粗蛋白含量为目标参数,研究了基于无处理、局部中心化、全局中心化和Z-score标准化预处理方法的正交信号校正,在源仪器(SPECTRUM ONE NTS)和目标仪器1(AN-TARIS)与目标仪器2(FOSS 6500)之间的模型传递效果。实验表明:对于两台傅里叶变换型近红外光谱仪,采用局部中心化、全局中心化和Z-score标准化预处理方法的正交信号校正均可成功实现模型传递,其中局部中心化和全局中心化法的作用效果基本一致,且优于Z-score标准化法。对于傅立叶变换和光栅型近红外光谱仪,全局中心化的作用效果明显优于其它3组处理效果,且只有全局中心化预处理的正交信号校正传递后的模型可用于实际预测。展开更多
文摘高光谱遥感是监测土壤盐渍化的重要手段之一,但野外光谱反射率易受土壤水分的影响,导致盐分监测精度难以保证。为有效消除水分因素,提高土壤含盐量反演精度,该研究以银川平原盐渍化土壤为研究对象,以野外土壤光谱反射率(reflectance,Ref)和实测土壤含盐量为数据源,分析不同含水率的土壤光谱特征,将反射率经过一阶微分(first derivative of reflectance,FDR)、正交信号校正(orthogonal signal correction,OSC)和一阶微分-正交信号校正(first derivative of reflectance-orthogonal signal correction,FDR-OSC)变换,分析各光谱数据与含盐量、含水率的相关性,确定最佳“除水”方法,然后基于支持向量机(support vector machine,SVM)建立土壤含盐量反演模型。结果表明:1)含水率与土壤光谱反射率呈反比,光谱在1430、1950、2200 nm附近存在吸收带,1950 nm附近为最主要吸收波段,且存在向长波漂移的现象。2)光谱数据与含水率相关性由强到弱的顺序为:Ref、OSC、FDR、FDR-OSC;与含盐量相关性由强到弱的顺序为:FDR-OSC、FDR、OSC、Ref。3)基于FDR-OSC“除水”的SVM含盐量模型决定系数R_(c)^(2)、R_(p)^(2)和相对分析误差(relative prediction deviation,RPD)分别达到0.952、0.960和5.04,具有极强的拟合和反演能力。研究结果可为银川平原及同类地区土壤含盐量的精准监测提供科学依据。
文摘介绍正交信号修正法的基本思想并详细推导该算法的实现步骤,将一种改进后的正交信号修正法(orthogonal signal correction,OSC)与偏最小二乘法(partial least square method,PLS)相结合,对原始数据通过OSC消除正交分量,利用PLS建立中长期负荷预测模型。该方法能有效地去除自变量系统中与因变量无关的正交数据信息,增强自变量、因变量之间的相关性,在有限的成分中提高成分解释能力。通过算例将PLS与OSC-PLS进行比较分析,结果表明,运用OSC-PLS进行中长期负荷预测,尽管预测模型提取的成分个数变少了,但模型成分的解释性却大幅度增强,预测精度明显提高,具有较强的实用性。
文摘探讨了基于不同数据预处理方法的正交信号校正在秸杆饲料近红外光谱模型传递中的应用。以141个秸杆青贮饲料样品为研究对象,以其粗蛋白含量为目标参数,研究了基于无处理、局部中心化、全局中心化和Z-score标准化预处理方法的正交信号校正,在源仪器(SPECTRUM ONE NTS)和目标仪器1(AN-TARIS)与目标仪器2(FOSS 6500)之间的模型传递效果。实验表明:对于两台傅里叶变换型近红外光谱仪,采用局部中心化、全局中心化和Z-score标准化预处理方法的正交信号校正均可成功实现模型传递,其中局部中心化和全局中心化法的作用效果基本一致,且优于Z-score标准化法。对于傅立叶变换和光栅型近红外光谱仪,全局中心化的作用效果明显优于其它3组处理效果,且只有全局中心化预处理的正交信号校正传递后的模型可用于实际预测。