The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0...The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0≤j≤n-k-1,where λ is a positive parmeter. Krasnoselsii’s fixed point theorem is employed to obtain the existence criteria for positive solution.展开更多
In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam wh...In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam whose both end_points are fixed.展开更多
In this paper, we discuss the positive definite problem of a binary quartic form and obtain a necessary and sufficient condition. In addition we give two examples to show that there are some errors in the paper [1].
In this paper, the authors study the existence of positive solution of the following BVP {1/p(t)(P(t)x′)′+f(t,x(t),p(t)x′(t))=0,o〈t〈+∞ αx(0)-βlimt→0p(t)x′(t)=0,γ limt→+∞x(t)+δl...In this paper, the authors study the existence of positive solution of the following BVP {1/p(t)(P(t)x′)′+f(t,x(t),p(t)x′(t))=0,o〈t〈+∞ αx(0)-βlimt→0p(t)x′(t)=0,γ limt→+∞x(t)+δlimt→+∞p(t)x′(t)=0 on the semi-infinite interval. By considering characterization of the nonlinearity, they obtain some new existence results.展开更多
Tikhonov regularization is a powerful tool for solving linear discrete ill-posed problems.However,effective methods for dealing with large-scale ill-posed problems are still lacking.The Kaczmarz method is an effective...Tikhonov regularization is a powerful tool for solving linear discrete ill-posed problems.However,effective methods for dealing with large-scale ill-posed problems are still lacking.The Kaczmarz method is an effective iterative projection algorithm for solving large linear equations due to its simplicity.We propose a regularized randomized extended Kaczmarz(RREK)algorithm for solving large discrete ill-posed problems via combining the Tikhonov regularization and the randomized Kaczmarz method.The convergence of the algorithm is proved.Numerical experiments illustrate that the proposed algorithm has higher accuracy and better image restoration quality compared with the existing randomized extended Kaczmarz(REK)method.展开更多
Using a fixed point theorem in cones, the paper consider the existence of positive solutions for a class of second-order m-point boundary value problem. Sufficient conditions to ensure the existence of double positive...Using a fixed point theorem in cones, the paper consider the existence of positive solutions for a class of second-order m-point boundary value problem. Sufficient conditions to ensure the existence of double positive solutions are obtained. The associated Green function of this problem is also given.展开更多
By using cone expansion-compression theorem in this paper, we study boundary value problems for a coupled system of nonlinear third-order differential equation. Some sufficient conditions are obtained which guarantee ...By using cone expansion-compression theorem in this paper, we study boundary value problems for a coupled system of nonlinear third-order differential equation. Some sufficient conditions are obtained which guarantee the boundary value problems for a coupled system of nonlinear third-order differential equation has at least one positive solution. Some examples are given to verify our results.展开更多
The singular boundary value problem{φ^(4)(x)-h(x)f(φ(x))=0,0〈x〈1, φ(0)=φ(1)=φ′(0)=φ′(1)=0.is considered under some conditions concerning the first eigenvaiues corresponding to the relevant ...The singular boundary value problem{φ^(4)(x)-h(x)f(φ(x))=0,0〈x〈1, φ(0)=φ(1)=φ′(0)=φ′(1)=0.is considered under some conditions concerning the first eigenvaiues corresponding to the relevant linear operators, where h(x) is allowed to be singular at both x = 0 and x = 1. The existence results of positive solutions are obtained by means of the cone theory and the fixed point index.展开更多
LSQR, a Lanczos bidiagonalization based Krylov subspace iterative method, and its mathematically equivalent conjugate gradient for least squares problems(CGLS) applied to normal equations system, are commonly used for...LSQR, a Lanczos bidiagonalization based Krylov subspace iterative method, and its mathematically equivalent conjugate gradient for least squares problems(CGLS) applied to normal equations system, are commonly used for large-scale discrete ill-posed problems. It is well known that LSQR and CGLS have regularizing effects, where the number of iterations plays the role of the regularization parameter. However, it has long been unknown whether the regularizing effects are good enough to find best possible regularized solutions. Here a best possible regularized solution means that it is at least as accurate as the best regularized solution obtained by the truncated singular value decomposition(TSVD) method. We establish bounds for the distance between the k-dimensional Krylov subspace and the k-dimensional dominant right singular space. They show that the Krylov subspace captures the dominant right singular space better for severely and moderately ill-posed problems than for mildly ill-posed problems. Our general conclusions are that LSQR has better regularizing effects for the first two kinds of problems than for the third kind, and a hybrid LSQR with additional regularization is generally needed for mildly ill-posed problems. Exploiting the established bounds, we derive an estimate for the accuracy of the rank k approximation generated by Lanczos bidiagonalization. Numerical experiments illustrate that the regularizing effects of LSQR are good enough to compute best possible regularized solutions for severely and moderately ill-posed problems, stronger than our theory, but they are not for mildly ill-posed problems and additional regularization is needed.展开更多
Abstract Mehrotra-type predictor-corrector algorithm is one of the most effective primal-dual interior- point methods. This paper presents an extension of the recent variant of second order Mehrotra-type predictor-cor...Abstract Mehrotra-type predictor-corrector algorithm is one of the most effective primal-dual interior- point methods. This paper presents an extension of the recent variant of second order Mehrotra-type predictor-corrector algorithm that was proposed by Salahi, et a1.(2006) for linear optimization. Basedon the NT direction as Newton search direction, it is shown that the iteration-complexity bound of thealgorithm for semidefinite optimization is which is similar to that of the correspondingalgorithm for linear optimization.展开更多
We are concerned with the maximization of tr(V T AV)/tr(V T BV)+tr(V T CV) over the Stiefel manifold {V ∈ R m×l | V T V = Il} (l 〈 m), where B is a given symmetric and positive definite matrix, A and...We are concerned with the maximization of tr(V T AV)/tr(V T BV)+tr(V T CV) over the Stiefel manifold {V ∈ R m×l | V T V = Il} (l 〈 m), where B is a given symmetric and positive definite matrix, A and C are symmetric matrices, and tr(. ) is the trace of a square matrix. This is a subspace version of the maximization problem studied in Zhang (2013), which arises from real-world applications in, for example, the downlink of a multi-user MIMO system and the sparse Fisher discriminant analysis in pattern recognition. We establish necessary conditions for both the local and global maximizers and connect the problem with a nonlinear extreme eigenvalue problem. The necessary condition for the global maximizers offers deep insights into the problem, on the one hand, and, on the other hand, naturally leads to a self-consistent-field (SCF) iteration to be presented and analyzed in detail in Part II of this paper.展开更多
文摘The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0≤j≤n-k-1,where λ is a positive parmeter. Krasnoselsii’s fixed point theorem is employed to obtain the existence criteria for positive solution.
文摘In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam whose both end_points are fixed.
文摘In this paper, we discuss the positive definite problem of a binary quartic form and obtain a necessary and sufficient condition. In addition we give two examples to show that there are some errors in the paper [1].
基金Supported by the Natural Scientific Fund of Zhejiang Province(Y604127)Supported by the Educational Scientific Fund of Zhejiang Province(20030594)
文摘In this paper, the authors study the existence of positive solution of the following BVP {1/p(t)(P(t)x′)′+f(t,x(t),p(t)x′(t))=0,o〈t〈+∞ αx(0)-βlimt→0p(t)x′(t)=0,γ limt→+∞x(t)+δlimt→+∞p(t)x′(t)=0 on the semi-infinite interval. By considering characterization of the nonlinearity, they obtain some new existence results.
基金supported by the National Natural Science Foundations of China(Nos.11571171,62073161,and 61473148)。
文摘Tikhonov regularization is a powerful tool for solving linear discrete ill-posed problems.However,effective methods for dealing with large-scale ill-posed problems are still lacking.The Kaczmarz method is an effective iterative projection algorithm for solving large linear equations due to its simplicity.We propose a regularized randomized extended Kaczmarz(RREK)algorithm for solving large discrete ill-posed problems via combining the Tikhonov regularization and the randomized Kaczmarz method.The convergence of the algorithm is proved.Numerical experiments illustrate that the proposed algorithm has higher accuracy and better image restoration quality compared with the existing randomized extended Kaczmarz(REK)method.
文摘Using a fixed point theorem in cones, the paper consider the existence of positive solutions for a class of second-order m-point boundary value problem. Sufficient conditions to ensure the existence of double positive solutions are obtained. The associated Green function of this problem is also given.
基金Foundation item: Supported by the National Natural Science Foundation of China(10801001) Supported by the Natural Science Foundation of Anhui Province(1208085MA13)
文摘By using cone expansion-compression theorem in this paper, we study boundary value problems for a coupled system of nonlinear third-order differential equation. Some sufficient conditions are obtained which guarantee the boundary value problems for a coupled system of nonlinear third-order differential equation has at least one positive solution. Some examples are given to verify our results.
基金the National Natural Science Foundation of China (No. 10671167) the Chunlei Program of SDUST (No. 2008AZZ044).
文摘The singular boundary value problem{φ^(4)(x)-h(x)f(φ(x))=0,0〈x〈1, φ(0)=φ(1)=φ′(0)=φ′(1)=0.is considered under some conditions concerning the first eigenvaiues corresponding to the relevant linear operators, where h(x) is allowed to be singular at both x = 0 and x = 1. The existence results of positive solutions are obtained by means of the cone theory and the fixed point index.
基金supported by National Basic Research Program of China (Grant No. 2011CB302400)National Natural Science Foundation of China (Grant No. 11371219)
文摘LSQR, a Lanczos bidiagonalization based Krylov subspace iterative method, and its mathematically equivalent conjugate gradient for least squares problems(CGLS) applied to normal equations system, are commonly used for large-scale discrete ill-posed problems. It is well known that LSQR and CGLS have regularizing effects, where the number of iterations plays the role of the regularization parameter. However, it has long been unknown whether the regularizing effects are good enough to find best possible regularized solutions. Here a best possible regularized solution means that it is at least as accurate as the best regularized solution obtained by the truncated singular value decomposition(TSVD) method. We establish bounds for the distance between the k-dimensional Krylov subspace and the k-dimensional dominant right singular space. They show that the Krylov subspace captures the dominant right singular space better for severely and moderately ill-posed problems than for mildly ill-posed problems. Our general conclusions are that LSQR has better regularizing effects for the first two kinds of problems than for the third kind, and a hybrid LSQR with additional regularization is generally needed for mildly ill-posed problems. Exploiting the established bounds, we derive an estimate for the accuracy of the rank k approximation generated by Lanczos bidiagonalization. Numerical experiments illustrate that the regularizing effects of LSQR are good enough to compute best possible regularized solutions for severely and moderately ill-posed problems, stronger than our theory, but they are not for mildly ill-posed problems and additional regularization is needed.
基金supported by Natural Science Foundation of Hubei Province under Grant No.2008CDZ047
文摘Abstract Mehrotra-type predictor-corrector algorithm is one of the most effective primal-dual interior- point methods. This paper presents an extension of the recent variant of second order Mehrotra-type predictor-corrector algorithm that was proposed by Salahi, et a1.(2006) for linear optimization. Basedon the NT direction as Newton search direction, it is shown that the iteration-complexity bound of thealgorithm for semidefinite optimization is which is similar to that of the correspondingalgorithm for linear optimization.
基金supported by National Natural Science Foundation of China(Grant Nos.11101257 and 11371102)the Basic Academic Discipline Program+3 种基金the 11th Five Year Plan of 211 Project for Shanghai University of Finance and Economicsa visiting scholar at the Department of Mathematics,University of Texas at Arlington from February 2013 toJanuary 2014supported by National Science Foundation of USA(Grant Nos.1115834and 1317330)a Research Gift Grant from Intel Corporation
文摘We are concerned with the maximization of tr(V T AV)/tr(V T BV)+tr(V T CV) over the Stiefel manifold {V ∈ R m×l | V T V = Il} (l 〈 m), where B is a given symmetric and positive definite matrix, A and C are symmetric matrices, and tr(. ) is the trace of a square matrix. This is a subspace version of the maximization problem studied in Zhang (2013), which arises from real-world applications in, for example, the downlink of a multi-user MIMO system and the sparse Fisher discriminant analysis in pattern recognition. We establish necessary conditions for both the local and global maximizers and connect the problem with a nonlinear extreme eigenvalue problem. The necessary condition for the global maximizers offers deep insights into the problem, on the one hand, and, on the other hand, naturally leads to a self-consistent-field (SCF) iteration to be presented and analyzed in detail in Part II of this paper.