利用K^(+)、Cl^(-)共掺杂来优化纳米Li_(2)Fe Si O_(4)/C正极材料的结构及电化学性能,通过固相反应制备了纳米Li_(2-x)K_(x )Fe Si O_(4-0.5x)Cl_(x)/C(x=0、0.01、0.02)正极材料。采用X射线衍射、扫描电子显微镜、透射电子显微镜、X射...利用K^(+)、Cl^(-)共掺杂来优化纳米Li_(2)Fe Si O_(4)/C正极材料的结构及电化学性能,通过固相反应制备了纳米Li_(2-x)K_(x )Fe Si O_(4-0.5x)Cl_(x)/C(x=0、0.01、0.02)正极材料。采用X射线衍射、扫描电子显微镜、透射电子显微镜、X射线光电子能谱和恒电流充放电等对比研究了3种正极材料的微观结构特征和电化学性能。研究表明纳米Li_(1.99)K_(0.01)Fe Si O_(3.995)Cl_(0.01)/C正极材料的晶面间距和晶胞体积最大,颗粒粒径最小,平均粒径为32 nm。这些特定的微观结构使其表现出最优的电化学性能。纳米Li_(1.99)K_(0.01)Fe Si O_(3.995)Cl_(0.01)/C在0.1C下的首次放电比容量高达203 m Ah·g^(-1),在1C下充放电循环100次的容量保持率为97.72%。展开更多
文摘利用K^(+)、Cl^(-)共掺杂来优化纳米Li_(2)Fe Si O_(4)/C正极材料的结构及电化学性能,通过固相反应制备了纳米Li_(2-x)K_(x )Fe Si O_(4-0.5x)Cl_(x)/C(x=0、0.01、0.02)正极材料。采用X射线衍射、扫描电子显微镜、透射电子显微镜、X射线光电子能谱和恒电流充放电等对比研究了3种正极材料的微观结构特征和电化学性能。研究表明纳米Li_(1.99)K_(0.01)Fe Si O_(3.995)Cl_(0.01)/C正极材料的晶面间距和晶胞体积最大,颗粒粒径最小,平均粒径为32 nm。这些特定的微观结构使其表现出最优的电化学性能。纳米Li_(1.99)K_(0.01)Fe Si O_(3.995)Cl_(0.01)/C在0.1C下的首次放电比容量高达203 m Ah·g^(-1),在1C下充放电循环100次的容量保持率为97.72%。
基金supported by the National Natural Science Foundation of the People’s Republic of China“Data-driven high-throughput screening of cathode materials for Zn-ion batteries”(22065032)Undergraduate Education and Teaching Research and Reform Project of Universities in Xinjiang Uygur Autonomous Region“Innovative research on ideological and political education in courses and virtual simulation technology in structural chemistry”(XJGXPTJG-202205).