期刊文献+
共找到102篇文章
< 1 2 6 >
每页显示 20 50 100
基于深度残差收缩网络的雷达空中目标识别
1
作者 尹建国 盛文 蒋伟 《系统工程与电子技术》 EI CSCD 北大核心 2024年第9期3012-3018,共7页
雷达空中目标高分辨距离像(high resolution range profile,HRRP)中往往包含一定的杂波噪声,利用HRRP开展空中目标识别需要重点考虑噪声的影响。针对上述问题,提出一种基于深度残差收缩网络(deep residual shrinkage network,DRSN)的雷... 雷达空中目标高分辨距离像(high resolution range profile,HRRP)中往往包含一定的杂波噪声,利用HRRP开展空中目标识别需要重点考虑噪声的影响。针对上述问题,提出一种基于深度残差收缩网络(deep residual shrinkage network,DRSN)的雷达空中目标HRRP识别方法。该网络将深度残差网络、软阈值函数和注意力机制结合起来,采用跨层恒等连接方式,不仅可以避免网络层数过深造成梯度消失或梯度爆炸,从而导致网络学习能力下降的问题,还可以有效过滤掉识别过程中噪声特征的影响,使模型专注于目标区域的深度特征识别,提升强噪声背景下模型的识别能力。实验结果表明,相对于其他常用的深度学习模型,所提方法在各个信噪比条件下,识别效果均有一定的优势,该模型对噪声具有较强的鲁棒性。 展开更多
关键词 空中目标识别 高分辨距离像 深度残差收缩网络 噪声鲁棒性
下载PDF
基于深度卷积自编码器和多尺度残差收缩网络的滚动轴承寿命状态识别
2
作者 潘雪娇 董绍江 +2 位作者 周存芳 肖家丰 宋锴 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期124-132,共9页
针对滚动轴承早期故障识别困难、退化性能难以准确评估的问题,提出了基于深度卷积自编码器(DCAE)和多尺度残差收缩网络(MSRSN)的滚动轴承寿命状态识别方法。首先,为获得清晰的故障特征频率及倍频,将原始数据样本转换为包络谱输入深度卷... 针对滚动轴承早期故障识别困难、退化性能难以准确评估的问题,提出了基于深度卷积自编码器(DCAE)和多尺度残差收缩网络(MSRSN)的滚动轴承寿命状态识别方法。首先,为获得清晰的故障特征频率及倍频,将原始数据样本转换为包络谱输入深度卷积自编码器中,实现轴承寿命状态特征的自动提取与表达,并基于多维尺度分析(MDS)算法约简寿命状态特征获得低维特征,然后计算低维特征空间内样本间的欧几里得距离(ED),即为轴承性能衰退评估指标;其次,为全面提取轴承性能衰退特征,提出了改进的多尺度残差收缩网络识别模型,并开发了ReLU与DropBlock正则化相结合的新激活策略增强模型的抗噪性;最后,将所提方法及对比方法应用于轴承全寿命实验数据。实验结果表明:笔者提出的性能衰退评估指标能够精准地识别轴承性能退化起始点以及刻画轴承的退化趋势,所提出的改进的多尺度残差收缩网络识别模型在S SNR=-4~6 dB环境中平均识别正确率为91.75%,能够准确识别轴承寿命状态,验证了方法的实用性以及有效性。 展开更多
关键词 车辆与机电工程 深度卷积自编码器 性能衰退指标 多尺度残差收缩网络 寿命状态识别
下载PDF
基于并行融合深度残差收缩网络的有源配电网故障诊断
3
作者 冯骥 杨国华 +4 位作者 史磊 潘欢 陆宇翔 张元曦 李祯 《综合智慧能源》 CAS 2024年第6期8-15,共8页
针对含分布式电源的配电网故障呈现方式多样化以及故障诊断易受分布式电源类型、输出功率等非线性因素影响等问题,提出一种基于并行融合深度残差收缩网络(P-FDRSN)的故障诊断模型。首先,构建具有故障识别支路和故障定位支路的并行网络... 针对含分布式电源的配电网故障呈现方式多样化以及故障诊断易受分布式电源类型、输出功率等非线性因素影响等问题,提出一种基于并行融合深度残差收缩网络(P-FDRSN)的故障诊断模型。首先,构建具有故障识别支路和故障定位支路的并行网络结构——P-FDRSN,在残差模块中引入收缩机制,减少网络中噪声或冗余信息的影响,提高网络对噪声的鲁棒性;其次,将故障录波信号波形幅值变化转换为灰度图和时频图,送入深度残差收缩网络进行深度特征提取并在汇聚层中将获取的特征进行融合,以增强故障录波信号的特征学习能力。仿真结果表明:在不同分布式电源类型和不同输出功率下,模型故障定位与识别精度均能保持在98.75%和97.25%以上,即使在噪声干扰的情况下,诊断准确率仍可保持在96.75%以上,模型具有较高的精度和较好的自适应性。 展开更多
关键词 有源配电网 分布式电源 故障诊断 并行网络结构 并行融合深度残差收缩网络
下载PDF
基于时序深度残差收缩网络的混叠信号调制识别方法
4
作者 刘京华 魏祥麟 +3 位作者 范建华 胡永扬 王晓波 于兵 《电信科学》 北大核心 2024年第10期27-38,共12页
基于深度学习进行信号自动调制识别在分类精度、可迁移性等方面普遍优于传统方法,引起广泛关注。但是,当前方法多数针对单信号样本进行识别,无法适用于混叠信号识别场景。针对该问题,对混叠信号调制识别方法进行了研究,结合长短期记忆(l... 基于深度学习进行信号自动调制识别在分类精度、可迁移性等方面普遍优于传统方法,引起广泛关注。但是,当前方法多数针对单信号样本进行识别,无法适用于混叠信号识别场景。针对该问题,对混叠信号调制识别方法进行了研究,结合长短期记忆(long short term memory,LSTM)网络和深度残差收缩网络(deep residual shrinkage network,DRSN),设计了时序深度残差收缩网络模型,其中包含残差模块、收缩模块和LSTM模块。残差模块和收缩模块负责提取混叠信号中的显著信息并自适应生成决策阈值,LSTM模块用于提取混叠信号中的时序隐含特征。三者结合可以有效提高混叠信号的识别精度。公开和实测数据集测试结果表明,所提方法识别精度优于5种典型方法,在高信噪比下的平均识别分类准确率可以达到92.7%;21种混叠信号中有12种识别准确率接近100%。 展开更多
关键词 调制识别 混叠信号 深度残差收缩网络 深度学习
下载PDF
小波变换和深度残差收缩网络在齿轮箱故障诊断中的应用
5
作者 翁敏超 王海瑞 朱贵富 《机械科学与技术》 CSCD 北大核心 2024年第5期790-797,共8页
齿轮的精确故障诊断是确保旋转机械设备稳定可靠运行的有效手段,针对强噪声环境下齿轮箱中齿轮故障分类问题,提出了一种基于连续小波变换和深度残差收缩网络的故障诊断模型。首先,采用小波变换对一维时间序列的振动数据进行时频分析,将... 齿轮的精确故障诊断是确保旋转机械设备稳定可靠运行的有效手段,针对强噪声环境下齿轮箱中齿轮故障分类问题,提出了一种基于连续小波变换和深度残差收缩网络的故障诊断模型。首先,采用小波变换对一维时间序列的振动数据进行时频分析,将其转化为二维时频图作为深度残差收缩网络(DRSN)的输入;其次,在多层卷积神经网络的基础上加入残差结构中的跨层恒等连接解决了梯度消失和爆炸的问题,同时利用自适应阈值子网络实现软阈值化降噪;最后,将故障样本的时频图作为诊断模型的输入进行故障分类。实验结果证明了与其他模型相比,本文采用的故障诊断方法更容易识别故障特征,分类准确率达到了99.15%。 展开更多
关键词 齿轮箱 时频分析 深度残差收缩网络(DRSN) 故障诊断
下载PDF
基于一维残差收缩网络的电能质量复合扰动识别
6
作者 杨惠 陈雷 +1 位作者 徐建军 包天悦 《自动化技术与应用》 2024年第4期51-55,共5页
电网中强噪声的干扰会严重影响电能质量复合扰动识别,为提高电能质量复合扰动识别准确率,提出一种基于一维残差收缩网络的电能质量复合扰动识别方法。该方法能够以原始数据作为输入避免有效特征的丢失,采用子网络自动设置阈值对各个特... 电网中强噪声的干扰会严重影响电能质量复合扰动识别,为提高电能质量复合扰动识别准确率,提出一种基于一维残差收缩网络的电能质量复合扰动识别方法。该方法能够以原始数据作为输入避免有效特征的丢失,采用子网络自动设置阈值对各个特征通道进行软阈值化,并通过加宽卷积层进一步增强网络抗噪性。仿真实验结果表明:所提方法在强噪声干扰下能快速准确识别电能质量复合扰动。 展开更多
关键词 电能质量扰动 深度学习 残差收缩网络 软阈值
下载PDF
基于深度残差收缩网络的刀具故障自感知系统研究
7
作者 李嘉豪 张兵 朱建阳 《农业装备与车辆工程》 2024年第10期104-110,共7页
传统机器学习在特征提取方面需要手动进行特征提取工程,存在局限性和维度灾难问题,同时处理非线性关系能力不足且精度有限。针对这些问题,基于深度残差收缩网络(DRSN),提出一种融合了注意力机制(MCA-a)及空间细化特征(SRU)和通道细化特... 传统机器学习在特征提取方面需要手动进行特征提取工程,存在局限性和维度灾难问题,同时处理非线性关系能力不足且精度有限。针对这些问题,基于深度残差收缩网络(DRSN),提出一种融合了注意力机制(MCA-a)及空间细化特征(SRU)和通道细化特征(CRU)的改进深度残差收缩网络(DRSN-IAM),有效解决传统神经网络由于网络过深而导致的梯度爆炸、梯度消失和特征提取能力不足等问题。使用公开数据集(即美国纽约预测与健康管理学会(PHM)2010年高速数控机床刀具健康预测竞赛的开放数据)进行验证,结果表明所提出的算法模型分类精度达到99.2%,比现有的DRSN错误率降低了40.1%。 展开更多
关键词 刀具故障诊断 人工智能 深度残差收缩网络 注意力机制
下载PDF
基于改进深度残差收缩网络的电缆早期故障识别
8
作者 唐丹 吴浩 +1 位作者 蔡源 郑超文 《科学技术与工程》 北大核心 2024年第28期12159-12168,共10页
电缆早期故障的多次发生易造成电缆出现永久性故障,给电网的稳定运行带来严重的影响。为了在永久性故障发生前准确识别出电缆早期故障,提出一种基于改进深度残差收缩网络的电缆早期故障识别方法。首先通过改进的完全自适应噪声经验模态... 电缆早期故障的多次发生易造成电缆出现永久性故障,给电网的稳定运行带来严重的影响。为了在永久性故障发生前准确识别出电缆早期故障,提出一种基于改进深度残差收缩网络的电缆早期故障识别方法。首先通过改进的完全自适应噪声经验模态分解方法(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)进行故障信号处理,并利用相关系数筛选本征模态函数(intrinsic mode functions,IMF);然后对IMF分量求其复合多尺度排列熵作为进一步的特征提取,以构建特征数据集;最后利用改进的收缩模块,多尺度卷积层、Self-Attention和SimAM注意力机制对深度残差收缩网络进行改进。使用改进的深度残差收缩网络进行电缆早期故障识别实验。实验结果表明:该算法能准确识别出电缆早期故障,且具有一定的抗干扰能力。 展开更多
关键词 电缆早期故障 改进的完全自适应噪声经验模态分解方法(ICEEMDAN) 复合多尺度排列熵 改进深度残差收缩网络 故障识别
下载PDF
基于改进深度残差收缩网络的电力系统暂态稳定评估 被引量:31
9
作者 卢锦玲 郭鲁豫 《电工技术学报》 EI CSCD 北大核心 2021年第11期2233-2244,共12页
针对电力系统暂态稳定评估中,电力系统同步相量测量装置(PMU)量测数据在采集和传输过程可能存在噪声问题,以及由于暂态稳定与失稳样本不平衡,导致基于数据驱动的暂态稳定评估模型训练的倾向性和误判后果严重问题,提出基于改进深度残差... 针对电力系统暂态稳定评估中,电力系统同步相量测量装置(PMU)量测数据在采集和传输过程可能存在噪声问题,以及由于暂态稳定与失稳样本不平衡,导致基于数据驱动的暂态稳定评估模型训练的倾向性和误判后果严重问题,提出基于改进深度残差收缩网络(IDRSN)的电力系统暂态稳定评估方法。首先将底层量测电气量构建成特征图形式作为模型输入,利用模型深层结构建立输入与稳定结果之间的映射关系。面对噪声问题,模型通过注意力机制,采用软阈值函数自动学习噪声阈值,减小噪声及无关特征干扰;并通过焦点损失函数(FL),引入权重系数修正模型训练的倾向性,利用调制因子重点关注误分类样本,提高模型训练效率和评估性能。通过新英格兰10机39节点系统进行仿真分析,所提模型能够有效减小不同程度的噪声干扰,在不平衡数据集上修正模型训练偏向性,以减少误分类样本,在不同PMU配置方案下,均取得较好评估效果。 展开更多
关键词 电力系统 暂态稳定评估 深度学习 深度残差收缩网络 焦点损失函数
下载PDF
基于深度残差收缩网络的HEp-2图像识别 被引量:6
10
作者 何涛 陈剑 闻英友 《计算机与现代化》 2021年第1期38-42,共5页
人上皮细胞(HEp-2)检测抗核抗体是诊断自身免疫性疾病的常用方法,HEp-2细胞图像识别对许多自身免疫性疾病的诊疗具有重要意义。针对目前主要采用手工评估方法造成效率低效、劳动强度高等问题,提出一种基于深度残差收缩网络的HEp-2细胞... 人上皮细胞(HEp-2)检测抗核抗体是诊断自身免疫性疾病的常用方法,HEp-2细胞图像识别对许多自身免疫性疾病的诊疗具有重要意义。针对目前主要采用手工评估方法造成效率低效、劳动强度高等问题,提出一种基于深度残差收缩网络的HEp-2细胞图像分类模型。该模型在深度残差网络基础上进行改进,残差学习模块使用恒等映射方法可以训练更深层次的网络。在每个残差学习模块内部嵌入一个软阈值非线性变换子网络,软阈值用以消除数据中的噪声和冗余信息,这些阈值通过子网络自动学习。实验表明,该方法具有良好的性能,优于其他深度神经网络方法。 展开更多
关键词 深度残差收缩网络 软阈值 卷积神经网络 图像识别
下载PDF
基于残差收缩网络的遥感图像目标检测算法 被引量:2
11
作者 高晔 郭松宜 厍向阳 《计算机工程与应用》 CSCD 北大核心 2022年第17期93-100,共8页
针对于遥感图像中背景复杂噪声多、小目标多且排布密集、目标尺度差异大等问题,提出了一种改进通道注意力与残差收缩网络的遥感图像目标检测算法。该算法借助卷积神经网络,以YOLOV3模型作为基础网络,选择Mosaic图像增强的方式进行数据... 针对于遥感图像中背景复杂噪声多、小目标多且排布密集、目标尺度差异大等问题,提出了一种改进通道注意力与残差收缩网络的遥感图像目标检测算法。该算法借助卷积神经网络,以YOLOV3模型作为基础网络,选择Mosaic图像增强的方式进行数据预处理,采用深度残差收缩模块重构了特征提取网络,并结合通道注意力机制与组合池化构建空间金字塔池化融合层,采用CIOU进行定位损失计算,最终实现遥感图像目标检测。实验结果表明:改进算法相比于原算法的总体mAP由89.2%提升至92.2%,获得了更好的性能表现。 展开更多
关键词 通道注意力 特征融合 遥感图像 残差收缩网络
下载PDF
基于改进空间残差收缩网络模型的农作物病虫害识别 被引量:9
12
作者 刘晓锋 高丽梅 《山东农业大学学报(自然科学版)》 北大核心 2022年第2期259-264,共6页
为了提高农作物病虫害识别的精度,本文将3D-CNN和2D-CNN与空间残差网络相结合,软阈值化作为非线性层嵌入空间残差网络以消除病虫害图像不重要的图像特征,提出一种基于空间残差收缩网络的农作物病虫害识别模型。与3D-CNN和ResNet相比,基... 为了提高农作物病虫害识别的精度,本文将3D-CNN和2D-CNN与空间残差网络相结合,软阈值化作为非线性层嵌入空间残差网络以消除病虫害图像不重要的图像特征,提出一种基于空间残差收缩网络的农作物病虫害识别模型。与3D-CNN和ResNet相比,基于空间残差收缩网络的农作物病虫害识别模型具有更高的精度和鲁棒性,总体分类精度为99.41%,增强了图像特征与病虫害类别的关系,可以识别多种农作物病虫害图像。 展开更多
关键词 空间残差收缩网络 农作物病虫害 图像识别
下载PDF
基于改进深度残差收缩网络的旋转机械故障诊断 被引量:1
13
作者 杨正理 吴馥云 陈海霞 《机电工程》 CAS 北大核心 2023年第3期344-352,共9页
旋转机械振动信号在多层深度学习过程中会出现退化和过拟合现象,同时含噪数据样本也会使模型故障诊断正确率偏低,数据样本不平衡会引起模型训练具有倾向性,针对以上一系列问题,提出了一种基于改进型深度残差收缩网络(DRSN)的旋转机械故... 旋转机械振动信号在多层深度学习过程中会出现退化和过拟合现象,同时含噪数据样本也会使模型故障诊断正确率偏低,数据样本不平衡会引起模型训练具有倾向性,针对以上一系列问题,提出了一种基于改进型深度残差收缩网络(DRSN)的旋转机械故障诊断方法。首先,对多故障、长时间序列数据样本进行了矩阵化处理,得到了模型容易接受的多维度灰度图故障样本;针对旋转机械从正常状态到故障状态的机械老化过程,采用了多点随机采样方法,构建了全寿命周期数据样本,用于后续的故障诊断;然后,在卷积神经网络(CNN)的基础上,通过引入残差项、注意力机制和焦点损失函数,构建起了多层深度残差收缩网络,对旋转机械进行了故障诊断(其中,残差项降低了训练过程中样本数据的特征损失,避免了模型的退化和过拟合;注意力机制和软阈值化自动设置噪声阈值,降低了噪声对故障诊断精度的影响;焦点损失函数修正了模型训练的倾向性,提高了模型训练效率和灵敏性);最后,利用滚动轴承数据库样本对模型的性能进行了实例验证。研究结果表明:DRSN模型在训练过程中没有出现明显的退化现象,能够始终保持较高的训练效率和故障诊断精度,有效避免了噪声干扰,在不平衡数据集上修正了模型训练的倾向性。与其他模型相比较,DRSN多层模型的平均故障诊断精度提高约1%~6%。 展开更多
关键词 滚动轴承 卷积神经网络 深度残差收缩网络 软阈值化 数据样本不平衡 噪声干扰
下载PDF
基于深度残差收缩网络的商品图像识别 被引量:5
14
作者 李昊璇 闫新艳 《测试技术学报》 2021年第4期294-299,322,共7页
为了降低噪声信息的干扰及提高商品图像识别的准确率,提出了基于深度残差收缩网络的商品图像识别模型.该模型在深度残差网络的基础上融入软阈值函数及注意力机制,软阈值函数将注意力机制注意到的不重要的特征置为0,从而降低噪声信息的干... 为了降低噪声信息的干扰及提高商品图像识别的准确率,提出了基于深度残差收缩网络的商品图像识别模型.该模型在深度残差网络的基础上融入软阈值函数及注意力机制,软阈值函数将注意力机制注意到的不重要的特征置为0,从而降低噪声信息的干扰,提高图像识别的准确率.实验首先通过爬虫方式获取了包含了51种商品的数据集,并且对该数据集通过图像翻转以及对图像加噪等操作,形成具有44066张图像的商品数据库.然后将深度残差收缩网络与深度残差网络、SENet算法模型对数据进行训练对比,同时对部分商品图像进行了测试.实验结果表明,深度残差收缩网络不仅可以提高商品图像识别准确率,同时还提高了模型的运行速度. 展开更多
关键词 商品识别 深度残差收缩网络 注意力机制 软阈值函数 噪声
下载PDF
基于深度残差收缩网络的信号调制类型识别 被引量:1
15
作者 吴爱华 彭金喜 《电子信息对抗技术》 北大核心 2022年第4期24-30,共7页
针对信号调制类型识别问题,提出一种基于深度残差收缩网络(DRSN)的识别方法。算法将原始的IQ两路时域信号数据直接输入网络,利用DRSN来学习时域序列中的调制特征以识别信号调制类型。与现有算法相比,该算法的网络输入为原始时域序列数据... 针对信号调制类型识别问题,提出一种基于深度残差收缩网络(DRSN)的识别方法。算法将原始的IQ两路时域信号数据直接输入网络,利用DRSN来学习时域序列中的调制特征以识别信号调制类型。与现有算法相比,该算法的网络输入为原始时域序列数据,特征提取和识别均在网络中进行,避免了人工特征提取的不完备性;借助DRSN的软阈值化和注意力机制,可有效抑制噪声干扰,从而提高网络从含噪声环境中提取有用特征的能力。仿真实验验证该算法的有效性和优越性。 展开更多
关键词 信号调制类型识别 深度残差收缩网络 注意力机制 软阈值化 时域序列
下载PDF
深度残差收缩网络的多特征锅炉炉管声波信号故障识别
16
作者 杨正理 吴馥云 陈海霞 《智能系统学报》 CSCD 北大核心 2023年第5期1108-1116,共9页
为了提高锅炉炉管声波信号故障识别的学习效果和识别精度,采用特征向量并行和拼接两种融合方式构成特征层,以及平均得分和最大值得分两种融合方式构建决策层等不同信息融合机制,提出基于深度残差收缩网络的多特征锅炉炉管声波信号故障... 为了提高锅炉炉管声波信号故障识别的学习效果和识别精度,采用特征向量并行和拼接两种融合方式构成特征层,以及平均得分和最大值得分两种融合方式构建决策层等不同信息融合机制,提出基于深度残差收缩网络的多特征锅炉炉管声波信号故障识别方法。首先,考虑锅炉炉管上各声波传感器的差异性,分别计算声波信号谱特征一阶和二阶差分构建三通道特征集作为二维网络的输入特征向量;然后,在卷积神经网络和双向长短时记忆网络基础上引入注意力机制构建基线模型,并采用深度残差收缩网络对二维网络的通道权重进行优化分配,提高模型的故障识别精度。大量实验结果表明:采用特征向量并行融合方式构成特征层的信息融合机制是一种更有效的策略;本文模型的识别精度得到较大程度提高,与基线模型相比较,未加权平均召回率提高了4.32%。 展开更多
关键词 深度学习 故障识别 深度残差收缩网络 双向长短时记忆网络 注意力机制 卷积神经网络 锅炉炉管 声波信号
下载PDF
基于深度残差收缩网络的油气柱高度预测
17
作者 杜睿山 程永昌 孟令东 《计算机技术与发展》 2023年第9期175-181,共7页
油藏的含油气柱高度在很大程度上反映了圈闭中油气层的丰富程度。石油含量高度的估计,对于钻前储量评价、井位优化部署等都有着一定重要性。为了提升油气柱高度预测精度,展开基于神经网络模型的油气柱高度预测方法的研究,并侧重于一维... 油藏的含油气柱高度在很大程度上反映了圈闭中油气层的丰富程度。石油含量高度的估计,对于钻前储量评价、井位优化部署等都有着一定重要性。为了提升油气柱高度预测精度,展开基于神经网络模型的油气柱高度预测方法的研究,并侧重于一维残差收缩网络的研究,因为一维的卷积核侧重对每一维特征的提取,更符合本实验数据的特性;其次模型使用了残差块,该模块使用链接跳跃方法来绕过输入信息直接输出来保护信息完整性,进而缓解梯度损失和网络退化问题;软阈值作为非线性变换层插入到深层结构中,以消除不重要的特征,来提高从高噪声数据中学习特征的能力。同时,为了验证模型的有效性,对目前应用较为广泛的模型,如CNN、1DCNN、GoogLeNet、DenseNet、1DRSN在圈闭数据上的应用进行了比较和分析。1DRSN预测准确率达到84.0%,优于其他模型,表明该模型对油气柱高度预测有更加准确的结果。 展开更多
关键词 油气柱高度 卷积神经网络 深度学习 软阈值 一维残差收缩网络
下载PDF
基于深度宽卷积残差收缩网络的球磨机负荷状态诊断
18
作者 高云鹏 孟雪晴 +3 位作者 张其旺 王庆凯 杨佳伟 董一隆 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第2期102-111,共10页
针对磨矿复杂工况下球磨机负荷状态准确诊断的难题,提出一种基于深度宽卷积残差收缩网络(Deep Wide Residual Shrinkage Networks, DWRSNs)的球磨机负荷状态诊断方法.首先采用宽卷积神经网络提取振动信号短时特征,建立三层深度残差收缩... 针对磨矿复杂工况下球磨机负荷状态准确诊断的难题,提出一种基于深度宽卷积残差收缩网络(Deep Wide Residual Shrinkage Networks, DWRSNs)的球磨机负荷状态诊断方法.首先采用宽卷积神经网络提取振动信号短时特征,建立三层深度残差收缩网络,利用软阈值函数进行非线性变换,再基于注意力机制模块自主学习阈值提取面向负荷状态的高级特征,通过全连接层、softmax层实现球磨机负荷状态的准确分类与判别.实测结果证明,本文提出的DWRSNs方法的拟合度、收敛速度及学习能力均优于现有DCNNs、ResNets和DRSNs诊断方法,且提取的振动信号特征具有高代表性,经TSNE可视化后簇内紧密度高、簇间分界明显.本文方法诊断测试集的准确率超过99%,交叉熵损失为0.077 2,相较于现有负荷状态诊断方法具有更高的准确率且诊断耗时更短,可实现球磨机负荷状态的准确判别,为选冶磨矿过程优化控制、提高磨矿效率提供有效、可靠的判据. 展开更多
关键词 球磨机 负荷状态 深度残差收缩网络 注意力机制
下载PDF
基于数据特征增强和残差收缩网络的变压器故障识别方法 被引量:29
19
作者 马鑫 尚毅梓 +1 位作者 胡昊 徐杨 《电力系统自动化》 EI CSCD 北大核心 2022年第3期175-183,共9页
为增强深度残差收缩网络对变压器故障特征的学习能力从而提高故障识别精度,文中研究构建了故障特征气体向量配合改进的深度残差收缩网络来识别变压器故障。首先,构建可变软阈值函数消除恒定偏差的影响,利用快速回溯算法加快阈值确定速... 为增强深度残差收缩网络对变压器故障特征的学习能力从而提高故障识别精度,文中研究构建了故障特征气体向量配合改进的深度残差收缩网络来识别变压器故障。首先,构建可变软阈值函数消除恒定偏差的影响,利用快速回溯算法加快阈值确定速度的同时确保输出结果的完整性。然后,提出带可变权重的交叉熵函数降低误识别对网络精度的影响,并将构建的特征气体向量作为网络输入,保证网络学习并识别更多故障因素的特征。最后,以过热故障和电弧放电故障为样本的实验结果验证了该方法的有效性。与传统方法相比,所提方法的识别精度高,而且适用于电力系统多特征故障识别。 展开更多
关键词 变压器 深度残差收缩网络 故障识别 特征气体
下载PDF
改进的深度残差收缩网络轴承故障诊断方法 被引量:4
20
作者 唐世钰 童靳于 +2 位作者 郑近德 潘海洋 伍毅 《振动与冲击》 EI CSCD 北大核心 2023年第18期217-224,285,共9页
针对深度残差收缩网络(deep residual shrinkage network,DRSN)在降噪过程中引起的信号失真问题,提出了一种改进的深度残差收缩网络(improved deep residual shrinkage network,IDRSN)并将其应用于滚动轴承的故障诊断中。首先,引入一种... 针对深度残差收缩网络(deep residual shrinkage network,DRSN)在降噪过程中引起的信号失真问题,提出了一种改进的深度残差收缩网络(improved deep residual shrinkage network,IDRSN)并将其应用于滚动轴承的故障诊断中。首先,引入一种改进的半软阈值函数(improved semi-soft threshold function,ISSTF)用于解决恒等偏差的问题并消除软阈值函数引起的信号失真。然后,设计了半软阈值模块(semi-soft threshold block,SSTB)和自适应斜率模块(adaptive slope block,ASB)构建改进的残差收缩单元(improved residual shrinkage building unit,IRSBU),用于自适应设置最优阈值并进一步修正输出。最后,将所提方法应用于两种不同工况的滚动轴承故障诊断中。研究结果表明,与现有方法相比,所提方法的分类准确率和鲁棒性更高,对于变转速工况下的故障诊断更为有效。 展开更多
关键词 故障诊断 滚动轴承 深度残差收缩网络 半软阈值函数 自适应斜率模块
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部