In this paper, we study the performance of physical-layer network coding in asymmetric two-way relay channels using four different cases having different poor channels:phase asymmetry, downlink asymmetry, uplink asymm...In this paper, we study the performance of physical-layer network coding in asymmetric two-way relay channels using four different cases having different poor channels:phase asymmetry, downlink asymmetry, uplink asymmetry and node asymmetry. The decision and mapping rule for symmetric and asymmetric cases are studied. The performance in terms of bit error rate for each case will be studied and analysed by computer simulation. Analytical and simulation results show that uplink asymmetry is the worst case;intra-phase asymmetry and unreliable uplink channels will more severely affect the performance degradation, which is caused by channel asymmetry.展开更多
In data post-processing for quantum key distribution, it is essential to have a highly efficient error reconciliation protocol. Based on the key redistribution scheme, we analyze a one-way error reconciliation protoco...In data post-processing for quantum key distribution, it is essential to have a highly efficient error reconciliation protocol. Based on the key redistribution scheme, we analyze a one-way error reconciliation protocol by data simulation. The relationship between the error correction capability and the key generation efficiency of three kinds of Hamming code are demonstrated. The simulation results indicate that when the initial error rates are (0,1.5%], (1.5,4%], and (4,11%], using the Hamming (31,26), (15,11), and (7,4) codes to correct the error, respectively, the key generation rate will be maximized. Based on this, we propose a modified one-way error reconciliation protocol which employs a mixed Hamming code concatenation scheme. The error correction capability and key generation rate are verified through data simulation. Using the parameters of the posterior distribution based on the tested data, a simple method for estimating the bit error rate (BER) with a given confidence interval is estimated. The simulation results show that when the initial bit error rate is 10.00%, after 7 rounds of error correction, the error bits are eliminated completely, and the key generation rate is 10.36%; the BER expectation is 2.96×10^-10, and when the confidence is 95% the corresponding BER upper limit is 2.17×10^-9. By comparison, for the single (7,4) Hamming code error reconciliation scheme at a confidence of 95%,the key generation rate is only 6.09%, while the BER expectation is 5.92x 10"9, with a BER upper limit of 4.34×10^-8. Hence, our improved protocol is much better than the original one.展开更多
In this paper, a weighted fractional Fourier transform(WFRFT) based cooperative overlay system, aiming to guarantee physical layer(PHY) security, is proposed. The paper elaborates how WFRFT and physical layer properti...In this paper, a weighted fractional Fourier transform(WFRFT) based cooperative overlay system, aiming to guarantee physical layer(PHY) security, is proposed. The paper elaborates how WFRFT and physical layer properties of the wireless medium are collaborated to guarantee the secrecy of wireless transmissions. In the proposed system, WFRFT is first preform on the secret data, such that the transmitted signal is distorted and can only be neutralized by inverse-WFRFT with the same parameter. And then two streams of the transformed sequences that bearing different messages are cooperatively and simultaneously transmitted to two legitimate receivers via a beamforming-liked method, respectively. In general, both the rapid spatial decorrelation property and the inherent security features of WFRFT are leveraged, such that only the eavesdropper's is degraded, and hence, the wireless communication secrecy is reliably guaranteed. Numerical simulations are conducted to evaluate the performance of the proposed system in terms of the average bit error rate and the secrecy capacity.展开更多
Integration interval and decision threshold issues were investigated for improved transmitted reference pulse cluster (iTRPC-) ultra-wideband (UWB) systems. Our analysis shows that the bit error rate (BER) perfo...Integration interval and decision threshold issues were investigated for improved transmitted reference pulse cluster (iTRPC-) ultra-wideband (UWB) systems. Our analysis shows that the bit error rate (BER) performance of iTRPC-UWB systems can be significantly improved via integration interval determination (IID) and decision threshold optimization. For this purpose, two modifications can be made at the autocorrelation receiver as follows. Firstly, the liD processing is performed for autocorrelation operation to capture multi-path energy as much as possible. Secondly, adaptive decision threshold (ADT) instead of zero decision threshold (ZDT), is used as estimated optimal decision threshold for symbol detection. Performance of iTRPCUWB systems using liD and ADT was evaluated in realistic IEEE 802.15.4a UWB channel models and the simulation results demonstrated our theoretical analysis.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.61101248the Equipment Advance Research Projectof"Twelfth Five-Year"Plan under Grant No.51306040202And this work has been performed in the Project"Advanced Communication Research Program(ACRP)"supported by the Directorate of Research and Development,Defense Science and Technology Agency,Singapore under Grant No.DSOCL04020
文摘In this paper, we study the performance of physical-layer network coding in asymmetric two-way relay channels using four different cases having different poor channels:phase asymmetry, downlink asymmetry, uplink asymmetry and node asymmetry. The decision and mapping rule for symmetric and asymmetric cases are studied. The performance in terms of bit error rate for each case will be studied and analysed by computer simulation. Analytical and simulation results show that uplink asymmetry is the worst case;intra-phase asymmetry and unreliable uplink channels will more severely affect the performance degradation, which is caused by channel asymmetry.
基金supported in part by the Foundation for Key Program of Chinese Ministry of Education under Grant No.212177Scientific Research Foundation of the Education Department of Shaanxi Province under Grant No.12JK0973
文摘In data post-processing for quantum key distribution, it is essential to have a highly efficient error reconciliation protocol. Based on the key redistribution scheme, we analyze a one-way error reconciliation protocol by data simulation. The relationship between the error correction capability and the key generation efficiency of three kinds of Hamming code are demonstrated. The simulation results indicate that when the initial error rates are (0,1.5%], (1.5,4%], and (4,11%], using the Hamming (31,26), (15,11), and (7,4) codes to correct the error, respectively, the key generation rate will be maximized. Based on this, we propose a modified one-way error reconciliation protocol which employs a mixed Hamming code concatenation scheme. The error correction capability and key generation rate are verified through data simulation. Using the parameters of the posterior distribution based on the tested data, a simple method for estimating the bit error rate (BER) with a given confidence interval is estimated. The simulation results show that when the initial bit error rate is 10.00%, after 7 rounds of error correction, the error bits are eliminated completely, and the key generation rate is 10.36%; the BER expectation is 2.96×10^-10, and when the confidence is 95% the corresponding BER upper limit is 2.17×10^-9. By comparison, for the single (7,4) Hamming code error reconciliation scheme at a confidence of 95%,the key generation rate is only 6.09%, while the BER expectation is 5.92x 10"9, with a BER upper limit of 4.34×10^-8. Hence, our improved protocol is much better than the original one.
基金supported by the National Basic Research Program of China under Grant 2013CB329003the National Natural Science Founda-tion General Program of China under Grant 61171110
文摘In this paper, a weighted fractional Fourier transform(WFRFT) based cooperative overlay system, aiming to guarantee physical layer(PHY) security, is proposed. The paper elaborates how WFRFT and physical layer properties of the wireless medium are collaborated to guarantee the secrecy of wireless transmissions. In the proposed system, WFRFT is first preform on the secret data, such that the transmitted signal is distorted and can only be neutralized by inverse-WFRFT with the same parameter. And then two streams of the transformed sequences that bearing different messages are cooperatively and simultaneously transmitted to two legitimate receivers via a beamforming-liked method, respectively. In general, both the rapid spatial decorrelation property and the inherent security features of WFRFT are leveraged, such that only the eavesdropper's is degraded, and hence, the wireless communication secrecy is reliably guaranteed. Numerical simulations are conducted to evaluate the performance of the proposed system in terms of the average bit error rate and the secrecy capacity.
基金supported in part by the National Natural Science Foundation of China under Grant 61271262,61473047 and 61572083in part by Shaanxi Provincial Natural Science Foundation under Grant 2015JM6310in part by the Special Fund for Basic Scientific Research of Central Colleges,Chang’an University 310824152010 and 0009-2014G1241043
文摘Integration interval and decision threshold issues were investigated for improved transmitted reference pulse cluster (iTRPC-) ultra-wideband (UWB) systems. Our analysis shows that the bit error rate (BER) performance of iTRPC-UWB systems can be significantly improved via integration interval determination (IID) and decision threshold optimization. For this purpose, two modifications can be made at the autocorrelation receiver as follows. Firstly, the liD processing is performed for autocorrelation operation to capture multi-path energy as much as possible. Secondly, adaptive decision threshold (ADT) instead of zero decision threshold (ZDT), is used as estimated optimal decision threshold for symbol detection. Performance of iTRPCUWB systems using liD and ADT was evaluated in realistic IEEE 802.15.4a UWB channel models and the simulation results demonstrated our theoretical analysis.