在经济快速发展,全球气候变暖的背景下,全国城市化进程稳步推进。在西部大开发等政策支持下,四川省作为重要发展区域之一,城市化进程快速推进。本文采用2000年⁓2020年城乡人口数据探究城市化水平时空分布规律、基于同期四川省土地覆盖...在经济快速发展,全球气候变暖的背景下,全国城市化进程稳步推进。在西部大开发等政策支持下,四川省作为重要发展区域之一,城市化进程快速推进。本文采用2000年⁓2020年城乡人口数据探究城市化水平时空分布规律、基于同期四川省土地覆盖数据分析其景观格局变化,同时结合同期气象要素的变化分析,探究四川省各城市群城市化进程对气象要素的影响。结果如下:1) 20年内四川省各城市群城市化水平增长率均为正值,城市化进程稳步推进,川东北城市群增长最快(0.1496)。2) 城市化水平空间分布存在区域性,总体规律为“成都平原城市群 > 川南城市群 > 川东北城市群”。3) 城市群不透水面的占比明显上升,例如成都平原城市群不透水面的占比从2000年1.3169%上升至2020年3.3926%。各城市群景观类型主要以农田、森林为主,各斑块之间较为紧凑、景观面积不平衡、差异大。4) 对于大多数城市来说,城市化水平与年平均相对湿度呈负相关,与年平均温度、年平均降水量呈正相关。5) 成都平原城市群、川东北城市群、川南城市群各城市群不同景观类型对城市气象要素的影响具有差异,对于成都平原城市群,不透水面的面积越大,相对湿度和日照时数就越高。In the context of rapid economic development and global warming, the national urbanization process has been steadily advancing. With the support of policies such as the western development, Sichuan Province, as one of the important development areas, has undergone a rapid urbanization process. This paper uses the urban and rural population data from 2000 to 2020 to explore the spatial and temporal distribution of urbanization level, analyzes the change of landscape pattern based on the land cover data of Sichuan Province during the same period, and combines the temporal distribution of meteorological elements during the same period. To explore the influence of urbanization process on meteorological elements of urban agglomerations in Sichuan Province. The results are as follows: 1) The urbanization growth rate of all urban agglomerations in Sichuan Province in the past 20 years is positive, and the urbanization process is advancing steadily, and the northeast Sichuan urban agglomerations have the fastest growth (0.1496). 2) The spatial distribution of urbanization level is regional, and the overall rule is “Chengdu Plain urban agglomeration > Southern Sichuan urban agglomeration > Northeast Sichuan urban agglomeration”. 3) The proportion of impervious surface in other urban agglomerations increased significantly. For example, the proportion of impervious surface in Chengdu Plain urban agglomeration increased from 1.3169% in 2000 to 3.3926% in 2020. The landscape types of urban agglomerations are mainly farmland and forest, and the patches are relatively compact, the landscape area is unbalanced and the differences are large. 4) For most cities, urbanization level is negatively correlated with annual mean relative humidity, and positively correlated with annual mean temperature and annual mean precipitation. 5) The impact of different landscape types on urban meteorological elements in Chengdu Plain urban agglomerations, northeast Sichuan urban agglomerations, South Sichuan urban agglomerations is different. For Chengdu Plain urban agglomerations, the greater the area of impervious surface, the higher the relative humidity and sunshine hours.展开更多
采用WRF(weather research forecast)模式中三种不同边界层参数化方案(YSU、MYJ、MYNN2)对2022年8月沈阳地区近地面逐时气象要素进行模拟研究,对比分析不同边界层参数化方案在模拟沈阳地区近地面气象要素时所表现出的差异。结果表明:三...采用WRF(weather research forecast)模式中三种不同边界层参数化方案(YSU、MYJ、MYNN2)对2022年8月沈阳地区近地面逐时气象要素进行模拟研究,对比分析不同边界层参数化方案在模拟沈阳地区近地面气象要素时所表现出的差异。结果表明:三种边界层参数化方案均能较好地模拟沈阳地区近地面气象要素逐时变化趋势。在模拟近地面风速方面三种边界层参数化方案模拟结果整体偏大;MYJ方案平均偏差最小,相关系数最高,模拟效果最好。三种参数化方案在对近地面温度模拟整体偏低,平均偏差均为负值;YSU方案相关系数最高,可达0.94。在模拟近地面相对湿度方面三种参数化方案模拟结果整体偏低;从相关系数来看YSU方案和MYNN2方案差异性不大。展开更多
文摘在经济快速发展,全球气候变暖的背景下,全国城市化进程稳步推进。在西部大开发等政策支持下,四川省作为重要发展区域之一,城市化进程快速推进。本文采用2000年⁓2020年城乡人口数据探究城市化水平时空分布规律、基于同期四川省土地覆盖数据分析其景观格局变化,同时结合同期气象要素的变化分析,探究四川省各城市群城市化进程对气象要素的影响。结果如下:1) 20年内四川省各城市群城市化水平增长率均为正值,城市化进程稳步推进,川东北城市群增长最快(0.1496)。2) 城市化水平空间分布存在区域性,总体规律为“成都平原城市群 > 川南城市群 > 川东北城市群”。3) 城市群不透水面的占比明显上升,例如成都平原城市群不透水面的占比从2000年1.3169%上升至2020年3.3926%。各城市群景观类型主要以农田、森林为主,各斑块之间较为紧凑、景观面积不平衡、差异大。4) 对于大多数城市来说,城市化水平与年平均相对湿度呈负相关,与年平均温度、年平均降水量呈正相关。5) 成都平原城市群、川东北城市群、川南城市群各城市群不同景观类型对城市气象要素的影响具有差异,对于成都平原城市群,不透水面的面积越大,相对湿度和日照时数就越高。In the context of rapid economic development and global warming, the national urbanization process has been steadily advancing. With the support of policies such as the western development, Sichuan Province, as one of the important development areas, has undergone a rapid urbanization process. This paper uses the urban and rural population data from 2000 to 2020 to explore the spatial and temporal distribution of urbanization level, analyzes the change of landscape pattern based on the land cover data of Sichuan Province during the same period, and combines the temporal distribution of meteorological elements during the same period. To explore the influence of urbanization process on meteorological elements of urban agglomerations in Sichuan Province. The results are as follows: 1) The urbanization growth rate of all urban agglomerations in Sichuan Province in the past 20 years is positive, and the urbanization process is advancing steadily, and the northeast Sichuan urban agglomerations have the fastest growth (0.1496). 2) The spatial distribution of urbanization level is regional, and the overall rule is “Chengdu Plain urban agglomeration > Southern Sichuan urban agglomeration > Northeast Sichuan urban agglomeration”. 3) The proportion of impervious surface in other urban agglomerations increased significantly. For example, the proportion of impervious surface in Chengdu Plain urban agglomeration increased from 1.3169% in 2000 to 3.3926% in 2020. The landscape types of urban agglomerations are mainly farmland and forest, and the patches are relatively compact, the landscape area is unbalanced and the differences are large. 4) For most cities, urbanization level is negatively correlated with annual mean relative humidity, and positively correlated with annual mean temperature and annual mean precipitation. 5) The impact of different landscape types on urban meteorological elements in Chengdu Plain urban agglomerations, northeast Sichuan urban agglomerations, South Sichuan urban agglomerations is different. For Chengdu Plain urban agglomerations, the greater the area of impervious surface, the higher the relative humidity and sunshine hours.
文摘采用WRF(weather research forecast)模式中三种不同边界层参数化方案(YSU、MYJ、MYNN2)对2022年8月沈阳地区近地面逐时气象要素进行模拟研究,对比分析不同边界层参数化方案在模拟沈阳地区近地面气象要素时所表现出的差异。结果表明:三种边界层参数化方案均能较好地模拟沈阳地区近地面气象要素逐时变化趋势。在模拟近地面风速方面三种边界层参数化方案模拟结果整体偏大;MYJ方案平均偏差最小,相关系数最高,模拟效果最好。三种参数化方案在对近地面温度模拟整体偏低,平均偏差均为负值;YSU方案相关系数最高,可达0.94。在模拟近地面相对湿度方面三种参数化方案模拟结果整体偏低;从相关系数来看YSU方案和MYNN2方案差异性不大。