TiO2/γ-Al2O3 supported In/Ag catalysts were prepared by impregnation method,and investigated for NO reduction with CO as the reducing agent under lean burn conditions.The microscopic structure and surface properties ...TiO2/γ-Al2O3 supported In/Ag catalysts were prepared by impregnation method,and investigated for NO reduction with CO as the reducing agent under lean burn conditions.The microscopic structure and surface properties of the catalysts were studied by N2 adsorption-desorption,X-ray diffraction,transmission electron microscopy,X-ray photoelectron spectroscopy,ultraviolet-visible spectroscopy,H2 temperature-programmed reduction and Fourier transform infrared spectroscopy.TiO2/γ-Al2O3 supported In/Ag is a good catalyst for the reduction of NO to N2.It displayed high dispersion,large amounts of surface active components and high NO adsorption capacity,which gave good catalytic performance and stability for the reduction of NO with CO under lean burn conditions.The silver species stabilized and improved the dispersion of the indium species.The introduction of TiO2 into the γ-Al2O3 support promoted NO adsorption and improved the dispersion of the indium species and silver species.展开更多
Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3...Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability.展开更多
Heterostructured BiOI@La(OH)3 nanorod photocatalysts were prepared by a facile chemical impregnation method.The enhanced visible light absorption and charge carrier separation can be simultaneously realized after th...Heterostructured BiOI@La(OH)3 nanorod photocatalysts were prepared by a facile chemical impregnation method.The enhanced visible light absorption and charge carrier separation can be simultaneously realized after the introduction of BiOI particles into La(OH)3 nanorods.The BiOI@La(OH)3 composites were applied for visible light photocatalytic oxidization of NO in air and exhibited an enhanced activity compared with BiOI and pure La(OH)3 nanorods.The results show that the energy levels between the La(OH)3 and BiOI phases matched well with each other,thus forming a heterojunctioned BiOI@La(OH)3 structure.This band structure matching could promote the separation and transfer of photoinduced electron-hole pairs at the interface,resulting in enhanced photocatalytic performance under visible light irradiation.The photocatalytic performance of BiOI@La(OH)3 is shown to be dependent on the mass ratio of BiOI to La(OH)3.The highest photocatalytic performance can be achieved when the mass ratio of BiOI to La(OH)3 is controlled at 1.5.A further increase of the mass ratio of BiOI weakened the redox abilities of the photogenerated charge carriers.A new photocatalytic mechanism for BiOI@La(OH)3 heterostructures is proposed,which is directly related to the efficient separation of photogenerated charge carriers by the heterojunction.Importantly,the as-prepared BiOI@La(OH)3 heterostructures exhibited a high photochemical stability after multiple reaction runs.Our findings demonstrate that BiOI is an effective component for the formation of a heterostructure with the properties of a wide bandgap semiconductor,which is of great importance for extending the light absorption and photocatalytic activity of wide bandgap semiconductors into visible light region.展开更多
In order to remove nitric oxides (NO) from flue gas, experimental studies on the photocatalytic oxidation (PCO) of NO are carried out in an efficient laboratory-scale reactor. Nano-sized TiO2 particles loading on ...In order to remove nitric oxides (NO) from flue gas, experimental studies on the photocatalytic oxidation (PCO) of NO are carried out in an efficient laboratory-scale reactor. Nano-sized TiO2 particles loading on quartz sand are prepared and used as the photocatalyst. Effects of several key operating parameters on NO conversion are investigated, including operating temperature, NO inlet concentration, oxygen percentage, relative humidity and residence time. The results illustrate that the NO inlet concentration, the oxygen percentage and the relative humidity play an important role in the oxidation of NO. A lower NO inlet concentration and a higher oxygen percentage result in a higher NO conversion efficiency. When the relative humidity is 8%, the maximum value of NO conversion efficiency is achieved. In addition, the operating temperature and the residence time have a little effect on the conversion efficiency of NO.展开更多
Graphitic carbon nitride(g-C3N4) with efficient photocatalytic activity was synthesized through thermal polymerization of thiourea with the addition of water(CN-W) or ethanol(CN-E) at 550 ℃for 2 h.The physicoch...Graphitic carbon nitride(g-C3N4) with efficient photocatalytic activity was synthesized through thermal polymerization of thiourea with the addition of water(CN-W) or ethanol(CN-E) at 550 ℃for 2 h.The physicochemical properties of the g-C3N4 were investigated by X-ray diffraction,transmission electron microscopy,ultraviolet-visible spectroscopy,photoluminescence spectroscopy,diffuse-reflection spectroscopy,BET and BJH surface area characterization,and elemental analysis.The carbon content was found to have self-doped into the g-C3N4 matrix during the thermal polymerization of thiourea and ethanol.CN-W and CN-E showed considerably enhanced visible-light photocatalytic activity,with NO removal percentages of 37.2%and 48.3%,respectively.Compared with pure g-C3N4,both the short and long lifetimes of the charge carriers in CN-W and CN-E were found to be prolonged.The mechanism of improved visible-light photocatalytic activity was deduced.The present work may provide a facile route to optimize the microstructure of g-C3N4photocatalysts for high-performance environmental and energy applications.展开更多
When the first fully expanded leaf of wheat ( Triticum aestivum L.) seedlings with two leaves were treated with different concentrations (0.05, 0.10, 0.20 and 0.50 mmol/L) of nitric oxide donor, sodium nitroprusside (...When the first fully expanded leaf of wheat ( Triticum aestivum L.) seedlings with two leaves were treated with different concentrations (0.05, 0.10, 0.20 and 0.50 mmol/L) of nitric oxide donor, sodium nitroprusside (SNP), the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) were reduced by the lower concentrations (0.05, 0.10 and 0.20 mmol/L), but enhanced by the higher concentration of SNP (0.50 mmol/L). The protective effect of 0.10 mmol/L SNP was the most obvious. Furthermore, the treatment with 0.10 mmol/L SNP on the above seedlings until the fourth leaves were fully expanded attenuated the accumulation of H2O2, superoxide anion radical (O-2(-)) and MDA, also counteracted the degradation of chlorophyll and soluble proteins, especally Rubisco, both leading to the effective delay of aging process in wheat leaves. The effects of different SNP concentrations (0.05, 0.10, 0.20, 0.50, 1.00 and 5.00 mmol/L) also displayed a dual role in an aging experiment of chloroplasts in vitro, one of which, 0.2 mmol/L SNP treatment, protected the membrane structure and attenuated the degradation of Rubisco effectively. Based on the present results, it was inferred that lower concentrations of nitric oxide (NO) might play a role in delaying aging process in wheat leaves, i.e., might attribute to decrease the level of reactive oxygen species (ROS) and the alleviation of further oxidative damage caused by ROS.展开更多
The atomic geometries, electronic structures, and formation energies of neutral nitrogen im- purities in ZnO have been investigated by first-principles calculations. The nitrogen impuri- ties are always deep acceptors...The atomic geometries, electronic structures, and formation energies of neutral nitrogen im- purities in ZnO have been investigated by first-principles calculations. The nitrogen impuri- ties are always deep acceptors, thus having no contributions to p-type conductivity. Among all the neutral nitrogen impurities, nitrogen substituting on an oxygen site has the lowest formation energy and the shallowest acceptor level, while nitrogen .substituting on a zinc site has the second-lowest formation energy in oxygen-rich conditions. Nitrogen interstitials are unstable at the tetrahedral site and spontaneously relax into a kick-out configuration. Though nitrogen may occupy the octahedral site, the concentrations will be low for the high formation energy. The charge density distributions in various doping cases are discussed, and self-consistent results are obtained.展开更多
Effects of sodium nitroprusside (SNP), a nitric oxide (NO) donor, on the germination and metabolism of reactive oxygen species were surveyed in wheat (Triticum aestivum L.) seeds. Germination of wheat seeds and even t...Effects of sodium nitroprusside (SNP), a nitric oxide (NO) donor, on the germination and metabolism of reactive oxygen species were surveyed in wheat (Triticum aestivum L.) seeds. Germination of wheat seeds and even the elongation of radicle and plumule were dramatically promoted by SNP treatments during the germination under osmotic stress. Meanwhile, activities of amylase and EP were enhanced, thus leading to the degradation of storage reserve in seeds. After osmotic stress was removed, higher viability of wheat seeds was also maintained. In addition, the activities of CAT, APX and the content of proline were increased by SNP treatment simultaneously, but activities of LOX were inhibited, and both of which were beneficial for improving the antioxidant capacity during the germination of wheat seeds under osmotic stress. It was also shown that the increase of the activity of amylase induced by SNP in embryoless half-seeds of wheat in the beginning period of germination (6 h) might be indirectly related to GA(3).展开更多
Objective Nitric oxide (NO) was speculated to play an Minocycline, a tetracycline derivative, reduced inflammation important role in the pathophysiology of cerebral ischemia. and protected against cerebral ischemia....Objective Nitric oxide (NO) was speculated to play an Minocycline, a tetracycline derivative, reduced inflammation important role in the pathophysiology of cerebral ischemia. and protected against cerebral ischemia. To study the neuroprotection mechanism of minocycline for vascular dementia, the influences of minocycline on expressions of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) were observed in the brains of Wistar rats. Methods The vascular dementia rat model was established by permanent bilateral common carotid arteries occlusion (BCCAO). Wistar rats were divideded into 3 groups randomly: sham-operation group (S group), vascular dementia model group (M group), and minocycline treatment group (MT group). The behaviour was tested with Morris water maze and open-field task. Expressions of iNOS and eNOS were measured by immunohistochemistry and reverse transcriptase-polymerase chain reaction (RT-PCR). The optical density value was measured by imaging analysis. Percentage of positive ceils with iNOS and eNOS expression was analyzed with optical microscope. Results Minocycline attenuated cognitive impairment. Inducible NOS was significantly down-regulated in MT group, compared with that in M group (P 〈 0.01), while eNOS was significantly up-regulated, compared with that in M group (P 〈 0.01). The expressions of iNOS and eNOS in M and MT groups were higher than those in S group (P 〈 0.01). Conclusion Minocycline can down-regulate the expression of iNOS and up-regulate the expression of eNOS in vascular dementia, which restrains apoptosis and oxidative stress to protect neural function.展开更多
[Objective] Effects of different concentrations of nitric oxide on membrane lipid peroxidation of wheat induced by enhanced UV-B radiation were researched,sodium nitroprusside (SNP) was selected as an exogenous nitr...[Objective] Effects of different concentrations of nitric oxide on membrane lipid peroxidation of wheat induced by enhanced UV-B radiation were researched,sodium nitroprusside (SNP) was selected as an exogenous nitric oxide(NO)donor.[Method] There are 3 groups including CK,UV treatment group (B),B+SNP treatment group,0,1,2,3,4 d sampling after treatment respectively,and physiological and biochemical indexes of MDA content and CAT,POD,SOD and so on were determined,repeated 3 times,and statistical analyzed.[Result] The results showed that,after the enhanced UV-B radiation,activity of the catalase (CAT),superoxide dismutase (SOD) and of the guaiacol peroxidase (POD) all reduced apparently,and the concentration of malondialdehyde (MDA) increased obviously,leading to oxidative damage in wheat seedlings.Impose different concentrations of SNP after UV-B radiation,may mitigate oxidative damage of wheat seedling from different degrees,which was in agreement with the effect of making the concentration of MDA decrease and the activity of the CAT,SOD and POD all increased.The mitigation role of 0.01 mol/L SNP was more obvious for roots' oxidative damage,while 0.1 mmol/L SNP is more effective for oxidative damage of leaves.[Conclusion] Exogenous NO donor SNP had obvious relieve effects on oxidative damage of wheat seedlings caused by UV-B radiation,which can enhance adaptive capacity of plants to adversity stress.展开更多
To investigate the effects of icariin (ICA) on angiotensin Ⅱ(Ang Ⅱ)-induced injury in human umbilical vein endothelial cells line (ECV-304). The ECV-304 cells were cultured in vitro. After 24 h incubating with...To investigate the effects of icariin (ICA) on angiotensin Ⅱ(Ang Ⅱ)-induced injury in human umbilical vein endothelial cells line (ECV-304). The ECV-304 cells were cultured in vitro. After 24 h incubating with icariin, the model of AngⅡ-induced injury in ECV-304 was established. The cell viability (MTT method), Lactate dehydrogenase (LDH) release and Nitric oxide (NO) production in the medium, the capacity of scavenging superoxide anion radicals (O2^-) and hydroxyl radicals (.OH) were measured. The activities of superoxide dismutase (SOD), total nitric oxide synthase (T-NOS), inducible nitric oxide synthase (iNOS) and constitutive nitric oxide synthase (cNOS) in the cells were determined. Compared with the Ang Ⅱ-treated group, ICA can significantly raise the viability of EC, increase the activities of SOD, T-NOS and cNOS, increase the production of NO, enhance the capacity of scavenging superoxide anion radicals ( O2^- ) and hydroxyl radicals(.OH), and lower LDH leakage and iNOS activity. The results suggest that ICA can protect endothelial cells (ECV-304) from Ang II-induced injury.展开更多
Objective To investigate the effect of nitric oxide (NO) on the expression of apelin receptor mRNA, as well as their correlation, in the caudate nucleus of rat. Methods L-Arginine (L-Arg), N^G-nitro-L-arginine met...Objective To investigate the effect of nitric oxide (NO) on the expression of apelin receptor mRNA, as well as their correlation, in the caudate nucleus of rat. Methods L-Arginine (L-Arg), N^G-nitro-L-arginine methyl ester (L-NAME) and normal saline (NS) was separately microinjected into rat caudate nucleus. Expressions of neuronal NO synthase (nNOS) mRNA and apelin receptor mRNA were detected by RT-PCR at 4, 8, 12, 24 and 48 h after microinjection, and their correlation was determined. Results The expressions of nNOS mRNA and apelin receptor mRNA were both significantly increased after microinjection of L-Arg, but significantly decreased after microinjection of L-NAME compared with the NS control group. The nNOS mRNA had a positive correlation with the expression of apelin receptor mRNA after microinjection of L-Arg and L-NAME. Conclusion The activity of NOS in the central nervous system, especially in the caudate nucleus, is one of the key factors for NO to exert many kinds of biological actions, such as modulation of central pain, as a neurotransmitter. The neurobiological action of NO in rat caudate nucleus may be associated with apelin receptors.展开更多
A series of Fe‐Mn/Al2O3 catalysts were prepared and studied for low temperature selective catalytic reduction (SCR) of NO with NH3 in a fixed‐bed reactor. The effects of Fe and Mn on NO conversion and the deactiva...A series of Fe‐Mn/Al2O3 catalysts were prepared and studied for low temperature selective catalytic reduction (SCR) of NO with NH3 in a fixed‐bed reactor. The effects of Fe and Mn on NO conversion and the deactivation of the catalysts were studied. N2 adsorption‐desorption, X‐ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, H2 temperature‐programmed reduction, NH3 temperature‐programmed desorption, X‐ray photoelectron spectroscopy (XPS), thermal gravimetric analysis and Fourier transform infrared spectroscopy were used to character‐ize the catalysts. The 8Fe‐8Mn/Al2O3 catalyst gave 99%of NO conversion at 150?? and more than 92.6%NO conversion was obtained in a wide low temperature range of 90–210??. XPS analysis demonstrated that the Fe3+was the main iron valence state on the catalyst surface and the addition of Mn increased the accumulation of Fe on the surface. The higher specific surface area, enhanced dispersion of amorphous Fe and Mn, improved reduction properties and surface acidity, lower binding energy, higher Mn4+/Mn3+ratio and more adsorbed oxygen species resulted in higher NO conversion for the 8Fe‐8Mn/Al2O3 catalyst. In addition, the SCR activity of the 8Fe‐8Mn/Al2O3 cata‐lyst was only slightly decreased in the presence of H2O and SO2, which indicated that the catalyst had better tolerance to H2O and SO2. The reaction temperature was crucial for the SO2 resistance of catalyst and the decrease of catalytic activity caused by SO2 was mainly due to the sulfate salts formed on the catalyst.展开更多
Objective: To investigate the role of PKC isoforms in the regulation of LPS-triggered tumoricidal activity in macrophages and further elucidate its signal mechanisms. Methods: Two macrophage cell lines (P388D1 and RAW...Objective: To investigate the role of PKC isoforms in the regulation of LPS-triggered tumoricidal activity in macrophages and further elucidate its signal mechanisms. Methods: Two macrophage cell lines (P388D1 and RAW264.7) were stimulated by LPS alone, or with long-term of PMA pretreatment. Then cytotoxicities to P815 cells (by MTT assay) and IL-1, TNF- (by ELISA) and nitric oxide (NO) production (by Griess reagent) in supernatants were measured. Western blot for PKC isoforms after long-term PMA pretreatment was analyzed. Results: RAW264.7 cells were stimulated with LPS to kill target tumor cells P815, whereas P388D1 cells failed to develop such an ability. Down-regulation of PKC isoforms by chronic treatment with PMA significantly inhibited the LPS-induced cytotoxicity in RAW264.7 cells. In unstimulated state, Western blotting with rabbit antiserum specific for the PKC, 1, 2, or showed all 5 isoforms were detected in P388D1 cells, while only PKC, PKC1 and PKC were detected in RAW264.7 cells. Exposure of the cells to long-term of PMA treatment significantly down-regulated the expression of PKC, PKC1 and PKC in RAW264.7 cells. But in P388D1 cells, although PKC, PKC and PKC were down-regulated, the expression of PKC1 and PKC2 could not be regulated. Comparing with LPS-induced IL-1, TNF- and NO production by the two macrophage cell lines, P388D1 failed to produce NO. In RAW264.7 cells, LPS-induced NO production and antitumor activity was attenuated by the addition of L-NAME, an iNOS inhibitor. Conclusion: The results indicated a critical role of PKC in LPS-induced antitumor activity and this cytotoxicity is mainly due to PKC- mediated NO production by RAW264.7 cells, but not a direct cytotoxic activity.展开更多
Objective:To explore the protective mechanisms of nerve growth factor (NGF) on spinal cord injury (SCI) and provide theoretical basis for its clinical application. Methods: The SCI of Wistar rats was done by Allens w...Objective:To explore the protective mechanisms of nerve growth factor (NGF) on spinal cord injury (SCI) and provide theoretical basis for its clinical application. Methods: The SCI of Wistar rats was done by Allens weight dropping way by a 10 g×2.5 cm impact on the posterior of spinal cord T 8. NGF (3 g/L, 20 μl) or normal saline was injected through catheter into subarachnoid space 2, 4, 8, 12 and 24 h after SCI. The expression of N-methyl-D-asparate receptor 1 (NMDAR 1) and neuronal constitutive nitric oxide synthase (ncNOS) mRNA in rat spinal cord was detected by in situ hybridization. Results: Abnormal expression of NMDAR 1 and ncNOS mRNA appeared in spinal ventral horn motorneuron in injured rats, as compared with that in control group. The expression of NMDAR 1 and ncNOS mRNA in NGF group was significantly lower than that in saline group (P<0.01). Conclusion: NGF can protect spinal cord against injury in vivo. One of the mechanisms is that NGF can prohibit NMDAR 1 and nitric oxide (NO) production after spinal cord injury.展开更多
Objective: To explore the pathogenesis of avascular necrosis of femoral head(ANFH) and search an effective method for clinical practice. Methods: Twenty-four Japanese rabbitswere divided into 2 groups of models and co...Objective: To explore the pathogenesis of avascular necrosis of femoral head(ANFH) and search an effective method for clinical practice. Methods: Twenty-four Japanese rabbitswere divided into 2 groups of models and controls. ANFH models were produced byintramuscular-injection of large dosage of steroid to rabbits for 8 weeks. From the 4th, 8th and12th week after production of models, 2 rabbits of each group were sacrificed to observe thestructure of femoral head through light microscope and scanning electron microscope. The contents ofNitric Oxide (NO), tissue-type plasminogen activator (t-PA) and -plasminogen activator inhibitor(PAI) in plasma of the 4 rabbits in each group were estimated at the same time. Results: Comparedwith control group, the rabbits of model group exhibited many differences: such as osteoporosis offemoral head, the presence of more bone lacuna and fat cell through light microscope observing; thebroken and sunk bone trabecula, the loosen and broken collagen fibers on the surface of bone matrixthrough scanning electron microscope observing. Compared with control group, the Concentration ofNO and t-PA in plasma of the model rabbits decreased obviously, but the Concentration of the PAIincreased obviously. Conclusion: The steroid-induced ANFH might be related to the lower level of NOand the descent of fibrinolytic activity.展开更多
基金supported by the National Science & Technology Pillar Program(2012BAF03B02)National Natural Science Foundation of China(21101085,U1162203)+3 种基金Natural Science Foundation of Liaoning Province(2015020196)Doctoral Fund of Shandong Province(BS2015HZ003)Fushun Science & Technology Program(FSKJHT 201423)Liaoning Excellent Talents Program in University(LJQ2012031)~~
文摘TiO2/γ-Al2O3 supported In/Ag catalysts were prepared by impregnation method,and investigated for NO reduction with CO as the reducing agent under lean burn conditions.The microscopic structure and surface properties of the catalysts were studied by N2 adsorption-desorption,X-ray diffraction,transmission electron microscopy,X-ray photoelectron spectroscopy,ultraviolet-visible spectroscopy,H2 temperature-programmed reduction and Fourier transform infrared spectroscopy.TiO2/γ-Al2O3 supported In/Ag is a good catalyst for the reduction of NO to N2.It displayed high dispersion,large amounts of surface active components and high NO adsorption capacity,which gave good catalytic performance and stability for the reduction of NO with CO under lean burn conditions.The silver species stabilized and improved the dispersion of the indium species.The introduction of TiO2 into the γ-Al2O3 support promoted NO adsorption and improved the dispersion of the indium species and silver species.
基金supported by the National Natural Science Foundation of China(5147807051108487)the Science and Technology Project from Chongqing Education Commission(KJ1400617)~~
文摘Ternary Ag/AgC l/BiO IO3 composite photocatalysts are prepared by a facile method. Enhanced visible-light absorption and charge carrier separation are achieved after the introduction of Ag/AgC l particles into BiO IO3 systems,as revealed by ultraviolet-visible diffuse-reflectance spectrometry,photocurrent response and electrochemical impedance spectroscopy. The Ag/AgC l/BiO IO3 composites are applied to the visible-light photocatalytic oxidization of NO in air and exhibit an enhanced activity for NO removal in comparison with Ag/AgC l and pure BiO IO3. A possible photocatalytic mechanism for Ag/AgC l/BiO IO3 is proposed,which is related to the surface plasmon resonance effects of Ag metal and the effective carrier separation ability of BiO IO3. This work provides insight into the design and preparation of BiO IO3-based materials with enhanced visible-light photocatalysis ability.
基金supported by the National Key Research and Development Project (2016YFC0204702)the National Natural Science Foundation of China (51478070, 21501016, 51108487)+2 种基金the Innovative Research Team of Chongqing (CXTDG201602014)the Natural Science Foundation of Chongqing (cstc2016jcyjA0481)Youth Innovation Promotion Association of Chinese Academy of Sciences (2015316)~~
文摘Heterostructured BiOI@La(OH)3 nanorod photocatalysts were prepared by a facile chemical impregnation method.The enhanced visible light absorption and charge carrier separation can be simultaneously realized after the introduction of BiOI particles into La(OH)3 nanorods.The BiOI@La(OH)3 composites were applied for visible light photocatalytic oxidization of NO in air and exhibited an enhanced activity compared with BiOI and pure La(OH)3 nanorods.The results show that the energy levels between the La(OH)3 and BiOI phases matched well with each other,thus forming a heterojunctioned BiOI@La(OH)3 structure.This band structure matching could promote the separation and transfer of photoinduced electron-hole pairs at the interface,resulting in enhanced photocatalytic performance under visible light irradiation.The photocatalytic performance of BiOI@La(OH)3 is shown to be dependent on the mass ratio of BiOI to La(OH)3.The highest photocatalytic performance can be achieved when the mass ratio of BiOI to La(OH)3 is controlled at 1.5.A further increase of the mass ratio of BiOI weakened the redox abilities of the photogenerated charge carriers.A new photocatalytic mechanism for BiOI@La(OH)3 heterostructures is proposed,which is directly related to the efficient separation of photogenerated charge carriers by the heterojunction.Importantly,the as-prepared BiOI@La(OH)3 heterostructures exhibited a high photochemical stability after multiple reaction runs.Our findings demonstrate that BiOI is an effective component for the formation of a heterostructure with the properties of a wide bandgap semiconductor,which is of great importance for extending the light absorption and photocatalytic activity of wide bandgap semiconductors into visible light region.
基金The National High Technology Research Program of China (863 Program) (No. 2008AA05Z303)the Science and Technology Program of Jiangsu Province (No. BE2010184)the Environmental Protection Scientific Research Subject of Jiangsu Province (No.201031)
文摘In order to remove nitric oxides (NO) from flue gas, experimental studies on the photocatalytic oxidation (PCO) of NO are carried out in an efficient laboratory-scale reactor. Nano-sized TiO2 particles loading on quartz sand are prepared and used as the photocatalyst. Effects of several key operating parameters on NO conversion are investigated, including operating temperature, NO inlet concentration, oxygen percentage, relative humidity and residence time. The results illustrate that the NO inlet concentration, the oxygen percentage and the relative humidity play an important role in the oxidation of NO. A lower NO inlet concentration and a higher oxygen percentage result in a higher NO conversion efficiency. When the relative humidity is 8%, the maximum value of NO conversion efficiency is achieved. In addition, the operating temperature and the residence time have a little effect on the conversion efficiency of NO.
基金supported by the China Postdoctoral Science Foundation Funded Project (2016M592642)Project from Chongqing Education Commission (KJ1600305)+3 种基金Chongqing Basic Science and Advanced Technology Research (cstc2016jcyjAX0003)the Start-up Foundation for Doctors of Chongqing Normal University (15XLB010, 15XLB014)the National Natural Science Foundation of China (51478070, 51108487)the Innovative Research Team of Chongqing (CXTDG201602014)~~
文摘Graphitic carbon nitride(g-C3N4) with efficient photocatalytic activity was synthesized through thermal polymerization of thiourea with the addition of water(CN-W) or ethanol(CN-E) at 550 ℃for 2 h.The physicochemical properties of the g-C3N4 were investigated by X-ray diffraction,transmission electron microscopy,ultraviolet-visible spectroscopy,photoluminescence spectroscopy,diffuse-reflection spectroscopy,BET and BJH surface area characterization,and elemental analysis.The carbon content was found to have self-doped into the g-C3N4 matrix during the thermal polymerization of thiourea and ethanol.CN-W and CN-E showed considerably enhanced visible-light photocatalytic activity,with NO removal percentages of 37.2%and 48.3%,respectively.Compared with pure g-C3N4,both the short and long lifetimes of the charge carriers in CN-W and CN-E were found to be prolonged.The mechanism of improved visible-light photocatalytic activity was deduced.The present work may provide a facile route to optimize the microstructure of g-C3N4photocatalysts for high-performance environmental and energy applications.
文摘When the first fully expanded leaf of wheat ( Triticum aestivum L.) seedlings with two leaves were treated with different concentrations (0.05, 0.10, 0.20 and 0.50 mmol/L) of nitric oxide donor, sodium nitroprusside (SNP), the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) were reduced by the lower concentrations (0.05, 0.10 and 0.20 mmol/L), but enhanced by the higher concentration of SNP (0.50 mmol/L). The protective effect of 0.10 mmol/L SNP was the most obvious. Furthermore, the treatment with 0.10 mmol/L SNP on the above seedlings until the fourth leaves were fully expanded attenuated the accumulation of H2O2, superoxide anion radical (O-2(-)) and MDA, also counteracted the degradation of chlorophyll and soluble proteins, especally Rubisco, both leading to the effective delay of aging process in wheat leaves. The effects of different SNP concentrations (0.05, 0.10, 0.20, 0.50, 1.00 and 5.00 mmol/L) also displayed a dual role in an aging experiment of chloroplasts in vitro, one of which, 0.2 mmol/L SNP treatment, protected the membrane structure and attenuated the degradation of Rubisco effectively. Based on the present results, it was inferred that lower concentrations of nitric oxide (NO) might play a role in delaying aging process in wheat leaves, i.e., might attribute to decrease the level of reactive oxygen species (ROS) and the alleviation of further oxidative damage caused by ROS.
文摘The atomic geometries, electronic structures, and formation energies of neutral nitrogen im- purities in ZnO have been investigated by first-principles calculations. The nitrogen impuri- ties are always deep acceptors, thus having no contributions to p-type conductivity. Among all the neutral nitrogen impurities, nitrogen substituting on an oxygen site has the lowest formation energy and the shallowest acceptor level, while nitrogen .substituting on a zinc site has the second-lowest formation energy in oxygen-rich conditions. Nitrogen interstitials are unstable at the tetrahedral site and spontaneously relax into a kick-out configuration. Though nitrogen may occupy the octahedral site, the concentrations will be low for the high formation energy. The charge density distributions in various doping cases are discussed, and self-consistent results are obtained.
文摘Effects of sodium nitroprusside (SNP), a nitric oxide (NO) donor, on the germination and metabolism of reactive oxygen species were surveyed in wheat (Triticum aestivum L.) seeds. Germination of wheat seeds and even the elongation of radicle and plumule were dramatically promoted by SNP treatments during the germination under osmotic stress. Meanwhile, activities of amylase and EP were enhanced, thus leading to the degradation of storage reserve in seeds. After osmotic stress was removed, higher viability of wheat seeds was also maintained. In addition, the activities of CAT, APX and the content of proline were increased by SNP treatment simultaneously, but activities of LOX were inhibited, and both of which were beneficial for improving the antioxidant capacity during the germination of wheat seeds under osmotic stress. It was also shown that the increase of the activity of amylase induced by SNP in embryoless half-seeds of wheat in the beginning period of germination (6 h) might be indirectly related to GA(3).
基金the High Technology Research Center of Chongqing Medical University (No. 2006010068)Ministry of Civil Affairs, China (No. 2007-18-3-05).
文摘Objective Nitric oxide (NO) was speculated to play an Minocycline, a tetracycline derivative, reduced inflammation important role in the pathophysiology of cerebral ischemia. and protected against cerebral ischemia. To study the neuroprotection mechanism of minocycline for vascular dementia, the influences of minocycline on expressions of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) were observed in the brains of Wistar rats. Methods The vascular dementia rat model was established by permanent bilateral common carotid arteries occlusion (BCCAO). Wistar rats were divideded into 3 groups randomly: sham-operation group (S group), vascular dementia model group (M group), and minocycline treatment group (MT group). The behaviour was tested with Morris water maze and open-field task. Expressions of iNOS and eNOS were measured by immunohistochemistry and reverse transcriptase-polymerase chain reaction (RT-PCR). The optical density value was measured by imaging analysis. Percentage of positive ceils with iNOS and eNOS expression was analyzed with optical microscope. Results Minocycline attenuated cognitive impairment. Inducible NOS was significantly down-regulated in MT group, compared with that in M group (P 〈 0.01), while eNOS was significantly up-regulated, compared with that in M group (P 〈 0.01). The expressions of iNOS and eNOS in M and MT groups were higher than those in S group (P 〈 0.01). Conclusion Minocycline can down-regulate the expression of iNOS and up-regulate the expression of eNOS in vascular dementia, which restrains apoptosis and oxidative stress to protect neural function.
基金Supported by National Natural Science Foundation of China(No.30671061)Natural Science Foundation of Shanxi Province(No.2008011059-1 and No.20041101)~~
文摘[Objective] Effects of different concentrations of nitric oxide on membrane lipid peroxidation of wheat induced by enhanced UV-B radiation were researched,sodium nitroprusside (SNP) was selected as an exogenous nitric oxide(NO)donor.[Method] There are 3 groups including CK,UV treatment group (B),B+SNP treatment group,0,1,2,3,4 d sampling after treatment respectively,and physiological and biochemical indexes of MDA content and CAT,POD,SOD and so on were determined,repeated 3 times,and statistical analyzed.[Result] The results showed that,after the enhanced UV-B radiation,activity of the catalase (CAT),superoxide dismutase (SOD) and of the guaiacol peroxidase (POD) all reduced apparently,and the concentration of malondialdehyde (MDA) increased obviously,leading to oxidative damage in wheat seedlings.Impose different concentrations of SNP after UV-B radiation,may mitigate oxidative damage of wheat seedling from different degrees,which was in agreement with the effect of making the concentration of MDA decrease and the activity of the CAT,SOD and POD all increased.The mitigation role of 0.01 mol/L SNP was more obvious for roots' oxidative damage,while 0.1 mmol/L SNP is more effective for oxidative damage of leaves.[Conclusion] Exogenous NO donor SNP had obvious relieve effects on oxidative damage of wheat seedlings caused by UV-B radiation,which can enhance adaptive capacity of plants to adversity stress.
基金National "Ninth five-year" Key Technology R&D Programme of China (Grant No.99-929-01-31)
文摘To investigate the effects of icariin (ICA) on angiotensin Ⅱ(Ang Ⅱ)-induced injury in human umbilical vein endothelial cells line (ECV-304). The ECV-304 cells were cultured in vitro. After 24 h incubating with icariin, the model of AngⅡ-induced injury in ECV-304 was established. The cell viability (MTT method), Lactate dehydrogenase (LDH) release and Nitric oxide (NO) production in the medium, the capacity of scavenging superoxide anion radicals (O2^-) and hydroxyl radicals (.OH) were measured. The activities of superoxide dismutase (SOD), total nitric oxide synthase (T-NOS), inducible nitric oxide synthase (iNOS) and constitutive nitric oxide synthase (cNOS) in the cells were determined. Compared with the Ang Ⅱ-treated group, ICA can significantly raise the viability of EC, increase the activities of SOD, T-NOS and cNOS, increase the production of NO, enhance the capacity of scavenging superoxide anion radicals ( O2^- ) and hydroxyl radicals(.OH), and lower LDH leakage and iNOS activity. The results suggest that ICA can protect endothelial cells (ECV-304) from Ang II-induced injury.
文摘Objective To investigate the effect of nitric oxide (NO) on the expression of apelin receptor mRNA, as well as their correlation, in the caudate nucleus of rat. Methods L-Arginine (L-Arg), N^G-nitro-L-arginine methyl ester (L-NAME) and normal saline (NS) was separately microinjected into rat caudate nucleus. Expressions of neuronal NO synthase (nNOS) mRNA and apelin receptor mRNA were detected by RT-PCR at 4, 8, 12, 24 and 48 h after microinjection, and their correlation was determined. Results The expressions of nNOS mRNA and apelin receptor mRNA were both significantly increased after microinjection of L-Arg, but significantly decreased after microinjection of L-NAME compared with the NS control group. The nNOS mRNA had a positive correlation with the expression of apelin receptor mRNA after microinjection of L-Arg and L-NAME. Conclusion The activity of NOS in the central nervous system, especially in the caudate nucleus, is one of the key factors for NO to exert many kinds of biological actions, such as modulation of central pain, as a neurotransmitter. The neurobiological action of NO in rat caudate nucleus may be associated with apelin receptors.
基金supported by the National High Technology Research and Development Program of China (863 Program,2015AA03A401)the National Natural Science Foundation of China (51276039)+1 种基金the Fundamental Research Funds for the Central Universities (020514380020,020514380030)the Postdoctoral Science Foundation of Jiangsu Province,China (1501033A)~~
文摘A series of Fe‐Mn/Al2O3 catalysts were prepared and studied for low temperature selective catalytic reduction (SCR) of NO with NH3 in a fixed‐bed reactor. The effects of Fe and Mn on NO conversion and the deactivation of the catalysts were studied. N2 adsorption‐desorption, X‐ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, H2 temperature‐programmed reduction, NH3 temperature‐programmed desorption, X‐ray photoelectron spectroscopy (XPS), thermal gravimetric analysis and Fourier transform infrared spectroscopy were used to character‐ize the catalysts. The 8Fe‐8Mn/Al2O3 catalyst gave 99%of NO conversion at 150?? and more than 92.6%NO conversion was obtained in a wide low temperature range of 90–210??. XPS analysis demonstrated that the Fe3+was the main iron valence state on the catalyst surface and the addition of Mn increased the accumulation of Fe on the surface. The higher specific surface area, enhanced dispersion of amorphous Fe and Mn, improved reduction properties and surface acidity, lower binding energy, higher Mn4+/Mn3+ratio and more adsorbed oxygen species resulted in higher NO conversion for the 8Fe‐8Mn/Al2O3 catalyst. In addition, the SCR activity of the 8Fe‐8Mn/Al2O3 cata‐lyst was only slightly decreased in the presence of H2O and SO2, which indicated that the catalyst had better tolerance to H2O and SO2. The reaction temperature was crucial for the SO2 resistance of catalyst and the decrease of catalytic activity caused by SO2 was mainly due to the sulfate salts formed on the catalyst.
文摘Objective: To investigate the role of PKC isoforms in the regulation of LPS-triggered tumoricidal activity in macrophages and further elucidate its signal mechanisms. Methods: Two macrophage cell lines (P388D1 and RAW264.7) were stimulated by LPS alone, or with long-term of PMA pretreatment. Then cytotoxicities to P815 cells (by MTT assay) and IL-1, TNF- (by ELISA) and nitric oxide (NO) production (by Griess reagent) in supernatants were measured. Western blot for PKC isoforms after long-term PMA pretreatment was analyzed. Results: RAW264.7 cells were stimulated with LPS to kill target tumor cells P815, whereas P388D1 cells failed to develop such an ability. Down-regulation of PKC isoforms by chronic treatment with PMA significantly inhibited the LPS-induced cytotoxicity in RAW264.7 cells. In unstimulated state, Western blotting with rabbit antiserum specific for the PKC, 1, 2, or showed all 5 isoforms were detected in P388D1 cells, while only PKC, PKC1 and PKC were detected in RAW264.7 cells. Exposure of the cells to long-term of PMA treatment significantly down-regulated the expression of PKC, PKC1 and PKC in RAW264.7 cells. But in P388D1 cells, although PKC, PKC and PKC were down-regulated, the expression of PKC1 and PKC2 could not be regulated. Comparing with LPS-induced IL-1, TNF- and NO production by the two macrophage cell lines, P388D1 failed to produce NO. In RAW264.7 cells, LPS-induced NO production and antitumor activity was attenuated by the addition of L-NAME, an iNOS inhibitor. Conclusion: The results indicated a critical role of PKC in LPS-induced antitumor activity and this cytotoxicity is mainly due to PKC- mediated NO production by RAW264.7 cells, but not a direct cytotoxic activity.
文摘Objective:To explore the protective mechanisms of nerve growth factor (NGF) on spinal cord injury (SCI) and provide theoretical basis for its clinical application. Methods: The SCI of Wistar rats was done by Allens weight dropping way by a 10 g×2.5 cm impact on the posterior of spinal cord T 8. NGF (3 g/L, 20 μl) or normal saline was injected through catheter into subarachnoid space 2, 4, 8, 12 and 24 h after SCI. The expression of N-methyl-D-asparate receptor 1 (NMDAR 1) and neuronal constitutive nitric oxide synthase (ncNOS) mRNA in rat spinal cord was detected by in situ hybridization. Results: Abnormal expression of NMDAR 1 and ncNOS mRNA appeared in spinal ventral horn motorneuron in injured rats, as compared with that in control group. The expression of NMDAR 1 and ncNOS mRNA in NGF group was significantly lower than that in saline group (P<0.01). Conclusion: NGF can protect spinal cord against injury in vivo. One of the mechanisms is that NGF can prohibit NMDAR 1 and nitric oxide (NO) production after spinal cord injury.
文摘Objective: To explore the pathogenesis of avascular necrosis of femoral head(ANFH) and search an effective method for clinical practice. Methods: Twenty-four Japanese rabbitswere divided into 2 groups of models and controls. ANFH models were produced byintramuscular-injection of large dosage of steroid to rabbits for 8 weeks. From the 4th, 8th and12th week after production of models, 2 rabbits of each group were sacrificed to observe thestructure of femoral head through light microscope and scanning electron microscope. The contents ofNitric Oxide (NO), tissue-type plasminogen activator (t-PA) and -plasminogen activator inhibitor(PAI) in plasma of the 4 rabbits in each group were estimated at the same time. Results: Comparedwith control group, the rabbits of model group exhibited many differences: such as osteoporosis offemoral head, the presence of more bone lacuna and fat cell through light microscope observing; thebroken and sunk bone trabecula, the loosen and broken collagen fibers on the surface of bone matrixthrough scanning electron microscope observing. Compared with control group, the Concentration ofNO and t-PA in plasma of the model rabbits decreased obviously, but the Concentration of the PAIincreased obviously. Conclusion: The steroid-induced ANFH might be related to the lower level of NOand the descent of fibrinolytic activity.